Citation: | SUN Mengmeng, LIU Xiaowei, CHEN Wenhui, SHEN Limin, YOU Dianlong, CHEN Zhen. Personalized Tensor Decomposition Based High-order Complementary Cloud API Recommendation[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2859-2871. doi: 10.11999/JEIT250003 |
[1] |
WU Di, ZHANG Peng, HE Yi, et al. A double-space and double-norm ensembled latent factor model for highly accurate web service QoS prediction[J]. IEEE Transactions on Services Computing, 2023, 16(2): 802–814. doi: 10.1109/TSC.2022.3178543.
|
[2] |
KALLA D, SMITH N, KURAKU S, et al. Study and analysis of chat GPT and its impact on different fields of study[J]. International Journal of Innovative Science and Research Technology, 2023, 8(3): 827–833. doi: 10.5281/zenodo.10250455.
|
[3] |
CHEN Zhen, BAO Taiyu, QI Wenchao, et al. Poisoning QoS-aware cloud API recommender system with generative adversarial network attack[J]. Expert Systems with Applications, 2024, 238: 121630. doi: 10.1016/j.eswa.2023.121630.
|
[4] |
ZHANG Yiwen, WANG Kaibin, HE Qiang, et al. Covering-based web service quality prediction via neighborhood-aware matrix factorization[J]. IEEE Transactions on Services Computing, 2021, 14(5): 1333–1344. doi: 10.1109/TSC.2019.2891517.
|
[5] |
NGUYEN M, YU Jian, NGUYEN T, et al. Attentional matrix factorization with context and co-invocation for service recommendation[J]. Expert Systems with Applications, 2021, 186: 115698. doi: 10.1016/j.eswa.2021.115698.
|
[6] |
ALMARIMI N, OUNI A, BOUKTIF S, et al. Web service API recommendation for automated mashup creation using multi-objective evolutionary search[J]. Applied Soft Computing, 2019, 85: 105830. doi: 10.1016/j.asoc.2019.105830.
|
[7] |
LI Hongchao, LIU Jianxun, CAO Buqing, et al. Integrating tag, topic, co-occurrence, and popularity to recommend web APIs for mashup creation[C]. Proceedings of 2017 IEEE International Conference on Services Computing, Honolulu, USA, 2017: 84–91. doi: 10.1109/SCC.2017.19.
|
[8] |
WU Hao, DUAN Yunhao, YUE Kun, et al. Mashup-oriented web API recommendation via multi-model fusion and multi-task learning[J]. IEEE Transactions on Services Computing, 2022, 15(6): 3330–3343. doi: 10.1109/TSC.2021.3098756.
|
[9] |
SANG Chunyan, DENG Xinyan, and LIAO Shigen. Mashup-oriented web API recommendation via full-text semantic mining of developer requirements[J]. IEEE Transactions on Services Computing, 2023, 16(4): 2755–2768. doi: 10.1109/TSC.2023.3245652.
|
[10] |
HE Pengfei, QI Wenchao, LIU Xiaowei, et al. Seizing the long tail: Neural complementary recommendation for cloud API delivery[C]. Proceedings of 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles, Haikou, China, 2022: 1954–1961. doi: 10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00283.
|
[11] |
陈真, 谢登辉, 王小龙, 等. 基于概率逻辑推理的高阶互补云API推荐方法[J]. 计算机学报, 2024, 47(8): 1922–1948. doi: 10.11897/SP.J.1016.2024.01922.
CHEN Zhen, XIE Denghui, WANG Xiaolong, et al. Probabilistic logic reasoning for high-order complementary cloud API recommendation[J]. Chinese Journal of Computers, 2024, 47(8): 1922–1948. doi: 10.11897/SP.J.1016.2024.01922.
|
[12] |
ENTEZARI N, PAPALEXAKIS E E, WANG Haixun, et al. Tensor-based complementary product recommendation[C]. Proceedings of 2021 IEEE International Conference on Big Data, Orlando, USA, 2021: 409–415. doi: 10.1109/BigData52589.2021.9671938.
|
[13] |
BIBAS K, SHALOM O S, and JANNACH D. Semi-supervised adversarial learning for complementary item recommendation[C]. Proceedings of the ACM Web Conference 2023, Austin, USA, 2023: 1804–1812. doi: 10.1145/3543507.3583462.
|
[14] |
ZHANG Yin, LU Haokai, NIU Wei, et al. Quality-aware neural complementary item recommendation[C]. Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Canada, 2018: 77–85. doi: 10.1145/3240323.3240368.
|
[15] |
HAO Junheng, ZHAO Tong, LI Jin, et al. P-companion: A principled framework for diversified complementary product recommendation[C]. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020: 2517–2524. doi: 10.1145/3340531.3412732.
|
[16] |
YAN An, DONG Chaosheng, GAO Yan, et al. Personalized complementary product recommendation[C]. Proceedings of the Web Conference 2022, Lyon, France, 2022: 146–151. doi: 10.1145/3487553.3524222.
|
[17] |
WANG Ke, ZHU Yanmin, ZANG Tianzi, et al. Review-enhanced hierarchical contrastive learning for recommendation[C]. Proceedings of the 38th AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2024: 9107–9115. doi: 10.1609/AAAI.V38I8.28761.
|
[18] |
LIU Xiaowei, SUN Mengmeng, CHEN Wenhui, et al. Complementarity analysis of cloud API ecosystems: An empirical study on ProgrammableWeb and Huawei AppGallery datasets[C]. Proceedings of 2024 IEEE International Conference on Web Services, Shenzhen, China, 2024: 364–370. doi: 10.1109/ICWS62655.2024.00058.
|
[19] |
RENDLE S. Factorization machines[C]. Proceedings of 2010 IEEE International Conference on Data Mining, Sydney, Australia, 2010: 995–1000. doi: 10.1109/ICDM.2010.127.
|
[20] |
CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, USA, 2016: 7–10. doi: 10.1145/2988450.2988454.
|
[21] |
XIAO Jun, YE Hao, HE Xiangnan, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks[C]. Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 3119–3124. doi: 10.24963/IJCAI.2017/435.
|
[22] |
WANG Ruoxi, FU Bin, FU Gang, et al. Deep & cross network for ad click predictions[C]. Proceedings of the ADKDD’17, Halifax, Canada, 2017: 12. doi: 10.1145/3124749.3124754.
|
[23] |
LIAN Jianxun, ZHOU Xiaohuan, ZHANG Fuzheng, et al. xDeepFM: Combining explicit and implicit feature interactions for recommender systems[C]. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 1754–1763. doi: 10.1145/3219819.3220023.
|
[24] |
SONG Weiping, SHI Chence, XIAO Zhiping, et al. Autoint: Automatic feature interaction learning via self-attentive neural networks[C]. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 1161–1170. doi: 10.1145/3357384.3357925.
|
[25] |
WANG Ruoxi, SHIVANNA R, CHENG D, et al. DCN V2: Improved deep & cross network and practical lessons for web-scale learning to rank systems[C]. Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 2021: 1785–1797. doi: 10.1145/3442381.3450078.
|
[26] |
CHEN Bo, WANG Yichao, LIU Zhirong, et al. Enhancing explicit and implicit feature interactions via information sharing for parallel deep CTR models[C]. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Australia, 2021: 3757–3766. doi: 10.1145/3459637.3481915.
|
[27] |
MAO Kelong, ZHU Jieming, SU Liangcai, et al. FinalMLP: An enhanced two-stream MLP model for CTR prediction[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 4552–4560. doi: 10.1609/AAAI.V37I4.25577.
|