Citation: | LU Weidang, FENG Kai, DING Yu, LI Bo, ZHAO Nan. Research on Security, Privacy, and Energy Efficiency in Unmanned Aerial Vehicle-Assisted Federal Edge Learning Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240847 |
[1] |
BASHIR A K, VICTOR N, BHATTACHARYA S, et al. Federated learning for the healthcare metaverse: Concepts, applications, challenges, and future directions[J]. IEEE Internet of Things Journal, 2023, 10(24): 21873–21891. doi: 10.1109/JIOT.2023.3304790.
|
[2] |
ZHANG Shiying, LI Jun, SHI Long, et al. Federated learning in intelligent transportation systems: Recent applications and open problems[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(5): 3259–3285. doi: 10.1109/TITS.2023.3324962.
|
[3] |
ZHAO Yang, ZHAO Jun, JIANG Linshan, et al. Privacy-preserving blockchain-based federated learning for IoT devices[J]. IEEE Internet of Things Journal, 2021, 8(3): 1817–1829. doi: 10.1109/JIOT.2020.3017377.
|
[4] |
KURUNATHAN H, HUANG Hailong, LI Kai, et al. Machine learning-aided operations and communications of unmanned aerial vehicles: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 496–533. doi: 10.1109/COMST.2023.3312221.
|
[5] |
BAI Yang, CHEN Lixing, LI Jianhua, et al. Multicore federated learning for mobile-edge computing platforms[J]. IEEE Internet of Things Journal, 2023, 10(7): 5940–5952. doi: 10.1109/JIOT.2022.3224239.
|
[6] |
WANG Xiaofei, HAN Yiwen, WANG Chenyang, et al. In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning[J]. IEEE Network, 2019, 33(5): 156–165. doi: 10.1109/MNET.2019.1800286.
|
[7] |
SUN Wen, ZHAO Yong, MA Wenqiang, et al. Accelerating convergence of federated learning in MEC with dynamic community[J]. IEEE Transactions on Mobile Computing, 2024, 23(2): 1769–1784. doi: 10.1109/TMC.2023.3241770.
|
[8] |
LIM W Y B, NG J S, XIONG Zehui, et al. Decentralized edge intelligence: A dynamic resource allocation framework for hierarchical federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(3): 536–550. doi: 10.1109/TPDS.2021.3096076.
|
[9] |
陈卓, 江辉, 周杨. 一种面向联邦学习对抗攻击的选择性防御策略[J]. 电子与信息学报, 2024, 46(3): 1119–1127. doi: 10.11999/JEIT230137.
CHEN Zhuo, JIANG Hui, and ZHOU Yang. A selective defense strategy for federated learning against attacks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1119–1127. doi: 10.11999/JEIT230137.
|
[10] |
YAN Kang, SHU Nina, WU Tao, et al. A survey of energy-efficient strategies for federated learning inmobile edge computing[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(5): 645–663. doi: 10.1631/FITEE.2300181.
|
[11] |
LIU Tianyu, DI Boya, and SONG Lingyang. Privacy-preserving federated edge learning: Modeling and optimization[J]. IEEE Communications Letters, 2022, 26(7): 1489–1493. doi: 10.1109/LCOMM.2022.3167088.
|
[12] |
DAO N N, PHAM Q V, TU N H, et al. Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1193–1225. doi: 10.1109/COMST.2021.3059644.
|
[13] |
HOU Peng, JIANG Xiaohan, WANG Zongshan, et al. Federated deep reinforcement learning-based intelligent dynamic services in UAV-assisted MEC[J]. IEEE Internet of Things Journal, 2023, 10(23): 20415–20428. doi: 10.1109/JIOT.2023.3284450.
|
[14] |
. NEHRA A, CONSUL P, BUDHIRAJA I, et al. Federated learning based trajectory optimization for UAV enabled MEC[C]. Proceedings of 2023 IEEE International Conference on Communications, Rome, Italy, 2023: 1640–1645. doi: 10.1109/ICC45041.2023.10278857.
|
[15] |
TANG Shunpu, ZHOU Wenqi, CHEN Lunyuan, et al. Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks[J]. Physical Communication, 2021, 47: 101381. doi: 10.1016/j.phycom.2021.101381.
|
[16] |
SEID A M, ERBAD A, ABISHU H N, et al. Multiagent federated reinforcement learning for resource allocation in UAV-enabled internet of medical things networks[J]. IEEE Internet of Things Journal, 2023, 10(22): 19695–19711. doi: 10.1109/JIOT.2023.3283353.
|
[17] |
. GEIPING J, BAUERMEISTER H, DRöGE H, et al. Inverting gradients-how easy is it to break privacy in federated learning?[C]. Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1421.
|
[18] |
YAO Jingjing and ANSARI N. Secure federated learning by power control for internet of drones[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(4): 1021–1031. doi: 10.1109/TCCN.2021.3076167.
|
[19] |
POPOSKA M, PEJOSKI S, RAKOVIC V, et al. Delay minimization of federated learning over wireless powered communication networks[J]. IEEE Communications Letters, 2024, 28(1): 108–112. doi: 10.1109/LCOMM.2023.3337320.
|
[20] |
YAO Jingjing and ANSARI N. Enhancing federated learning in fog-aided IoT by CPU frequency and wireless power control[J]. IEEE Internet of Things Journal, 2021, 8(5): 3438–3445. doi: 10.1109/JIOT.2020.3022590.
|