Citation: | GUO Xian, WANG Diandong, FENG Tao, CHENG Yudan, JIANG Yongbo. A Verifiable Privacy Protection Federated Learning Scheme Based on Homomorphic Encryption[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240390 |
[1] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[2] |
RODRÍGUEZ-BARROSO N, JIMÉNEZ-LÓPEZ D, LUZÓN M V, et al. Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges[J]. Information Fusion, 2023, 90: 148–173. doi: 10.1016/j.inffus.2022.09.011.
|
[3] |
孙钰, 严宇, 崔剑, 等. 联邦学习深度梯度反演攻防研究进展[J]. 电子与信息学报, 2024, 46(2): 428–442. doi: 10.11999/JEIT230541.
SUN Yu, YAN Yu, CUI Jian, et al. Review of deep gradient inversion attacks and defenses in federated learning[J]. Journal of Electronics & Information Technology, 2024, 46(2): 428–442. doi: 10.11999/JEIT230541.
|
[4] |
ZHANG Pengfei, CHENG Xiang, SU Sen, et al. Task allocation under geo-indistinguishability via group-based noise addition[J]. IEEE Transactions on Big Data, 2023, 9(3): 860–877. doi: 10.1109/TBDATA.2022.3215467.
|
[5] |
FENG Jun, YANG L T, REN Bocheng, et al. Tensor recurrent neural network with differential privacy[J]. IEEE Transactions on Computers, 2024, 73(3): 683–693. doi: 10.1109/TC.2023.3236868.
|
[6] |
FENG Jun, YANG L T, ZHU Qing, et al. Privacy-preserving tensor decomposition over encrypted data in a federated cloud environment[J]. IEEE Transactions on Dependable and Secure Computing, 2020, 17(4): 857–868. doi: 10.1109/TDSC.2018.2881452.
|
[7] |
ALAZAB M, RM S P, PARIMALA M, et al. Federated learning for cybersecurity: Concepts, challenges, and future directions[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3501–3509. doi: 10.1109/TII.2021.3119038.
|
[8] |
王冬, 秦倩倩, 郭开天, 等. 联邦学习中的模型逆向攻防研究综述[J]. 通信学报, 2023, 44(11): 94–109. doi: 10.11959/j.issn.1000-436x.2023209.
WANG Dong, QIN Qianqian, GUO Kaitian, et al. Survey on model inversion attack and defense in federated learning[J]. Journal on Communications, 2023, 44(11): 94–109. doi: 10.11959/j.issn.1000-436x.2023209.
|
[9] |
WANG Xiaoding, HU Jia, LIN Hui, et al. Federated learning-empowered disease diagnosis mechanism in the internet of medical things: From the privacy-preservation perspective[J]. IEEE Transactions on Industrial Informatics, 2023, 19(7): 7905–7913. doi: 10.1109/TII.2022.3210597.
|
[10] |
WEI Kang, LI Jun, DING Ming, et al. User-level privacy-preserving federated learning: Analysis and performance optimization[J]. IEEE Transactions on Mobile Computing, 2022, 21(9): 3388–3401. doi: 10.1109/TMC.2021.3056991.
|
[11] |
SUN Lichao, QIAN Jianwei, and CHEN Xun. LDP-FL: Practical private aggregation in federated learning with local differential privacy[C]. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021: 1571–1578. (查阅网上资料, 未找到本条文献出版地, 请确认) .
|
[12] |
HAN Liquan, FAN Di, LIU Jinyuan, et al. Federated learning differential privacy preservation method based on differentiated noise addition[C]. 2023 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China, 2023: 285–289. doi: 10.1109/ICCCBDA56900.2023.10154864.
|
[13] |
GUO Shengnan, WANG Xibin, LONG Shigong, et al. A federated learning scheme meets dynamic differential privacy[J]. CAAI Transactions on Intelligence Technology, 2023, 8(3): 1087–1100. doi: 10.1049/cit2.12187.
|
[14] |
STEVENS T, SKALKA C, VINCENT C, et al. Efficient differentially private secure aggregation for federated learning via hardness of learning with errors[C]. 31st USENIX Security Symposium (USENIX Security 22), Boston, USA, 2022: 1379–1395.
|
[15] |
BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 1175–1191. doi: 10.1145/3133956.3133982.
|
[16] |
ZHENG Yifeng, LAI Shangqi, LIU Yi, et al. Aggregation service for federated learning: An efficient, secure, and more resilient realization[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(2): 988–1001. doi: 10.1109/TDSC.2022.3146448.
|
[17] |
WIBAWA F, CATAK F O, KUZLU M, et al. Homomorphic encryption and federated learning based privacy-preserving CNN training: Covid-19 detection use-case[C]. Proceedings of the 2022 European Interdisciplinary Cybersecurity Conference, Barcelona, Spain, 2022: 85–90. doi: 10.1145/3528580.3532845.
|
[18] |
WANG Bo, LI Hongtao, GUO Yina, et al. PPFLHE: A privacy-preserving federated learning scheme with homomorphic encryption for healthcare data[J]. Applied Soft Computing, 2023, 146: 110677. doi: 10.1016/j.asoc.2023.110677.
|
[19] |
ZHANG Xianglong, FU Anmin, WANG Huaqun, et al. A privacy-preserving and verifiable federated learning scheme[C]. ICC 2020–2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148628.
|
[20] |
余晟兴, 陈钟. 基于同态加密的高效安全联邦学习聚合框架[J]. 通信学报, 2023, 44(1): 14–28. doi: 10.11959/j.issn.1000−436x.2023015.
YU Shengxing and CHEN Zhong. Efficient secure federated learning aggregation framework based on homomorphic encryption[J]. Journal on Communications, 2023, 44(1): 14–28. doi: 10.11959/j.issn.1000−436x.2023015.
|
[21] |
MA Jing, NAAS S A, SIGG S, et al. Privacy-preserving federated learning based on multi-key homomorphic encryption[J]. International Journal of Intelligent Systems, 2022, 37(9): 5880–5901. doi: 10.1002/int.22818.
|
[22] |
MA Xu, ZHANG Fangguo, CHEN Xiaofeng, et al. Privacy preserving multi-party computation delegation for deep learning in cloud computing[J]. Information Sciences, 2018, 459: 103–116. doi: 10.1016/j.ins.2018.05.005.
|
[23] |
XU Guowen, LI Hongwei, LIU Sen, et al. VerifyNet: Secure and verifiable federated learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 911–926. doi: 10.1109/TIFS.2019.2929409.
|
[24] |
SHEN Xiaoying, LUO Xue, YUAN Feng, et al. Verifiable privacy-preserving federated learning under multiple encrypted keys[J]. IEEE Internet of Things Journal, 2024, 11(2): 3430–3445. doi: 10.1109/JIOT.2023.3296637.
|
[25] |
SCHINDLER P, JUDMAYER A, STIFTER N, et al. EthDKG: Distributed key generation with Ethereum smart contracts[J]. Cryptology ePrint Archive, 2019. (查阅网上资料, 未找到本条文献卷期页码, 请确认) .
|
[26] |
YUN A, CHEON J H, and KIM Y. On homomorphic signatures for network coding[J]. IEEE Transactions on Computers, 2010, 59(9): 1295–1296. doi: 10.1109/TC.2010.73.
|
[27] |
ELGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE Transactions on Information Theory, 1985, 31(4): 469–472. doi: 10.1109/TIT.1985.1057074.
|
[28] |
ZHANG Li, XU Jianbo, VIJAYAKUMAR P, et al. Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2864–2880. doi: 10.1109/TNSE.2022.3185327.
|
1. | 倪晗玥,杨劲松,任林,李晓辉,董昌明,陈文. 基于卫星遥感资料的近海海上通信环境研究. 移动通信. 2024(11): 35-44+85 . ![]() | |
2. | Zhang Qianqian,Xu Yanli. Channel estimation based on multi-armed approach for maritime OFDM wireless communications. The Journal of China Universities of Posts and Telecommunications. 2023(04): 75-85+120 . ![]() | |
3. | 戴亚盛,马柏林,乐光学. 复杂气象环境海上无线通信信道衰落估计模型. 电信科学. 2022(03): 158-171 . ![]() | |
4. | 董浩,宋亮,化存卿,刘玲亚,唐俊华. 海上通信技术发展与研究综述. 电信科学. 2022(05): 1-17 . ![]() | |
5. | 强夕竹,乔钢,周锋. 一种改进的水声正交频分复用稀疏信道时延估计算法. 电子与信息学报. 2021(03): 817-825 . ![]() | |
6. | 袁智勇,钟章生. 无线光通信网络的最优信道选择方法研究. 激光杂志. 2021(11): 144-149 . ![]() |