Advanced Search
Volume 47 Issue 7
Jul.  2025
Turn off MathJax
Article Contents
LIN Hairong, DUAN Chenxing, DENG Xiaoheng, Geyong Min. Dual-Memristor Brain-Like Chaotic Neural Network and Its Application in IoMT Data Privacy Protection[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2194-2210. doi: 10.11999/JEIT241133
Citation: LIN Hairong, DUAN Chenxing, DENG Xiaoheng, Geyong Min. Dual-Memristor Brain-Like Chaotic Neural Network and Its Application in IoMT Data Privacy Protection[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2194-2210. doi: 10.11999/JEIT241133

Dual-Memristor Brain-Like Chaotic Neural Network and Its Application in IoMT Data Privacy Protection

doi: 10.11999/JEIT241133 cstr: 32379.14.JEIT241133
Funds:  The National Natural Science Foundation of China (62201204, 62373372), The Natural Science Foundation of Hunan (2023JJ40168, 2023JJ30696)
  • Received Date: 2024-12-25
  • Rev Recd Date: 2025-04-11
  • Available Online: 2025-04-11
  • Publish Date: 2025-07-22
  •   Objective  In recent years, frequent breaches of medical data have posed significant threats to patient privacy and health security, highlighting the urgent need for effective solutions to protect medical data privacy and security during transmission. This paper proposes a novel data privacy protection method for the Internet of Medical Things (IoMT) based on a dual-memristor-inspired brain-like chaotic neural network to address this challenge.  Methods  Leveraging the synaptic bionic characteristics of memristors, a dual-memristor brain-like chaotic neural network model based on the Hopfield neural network is developed. The complex chaotic dynamics of this model are thoroughly analyzed using nonlinear dynamics tools, including bifurcation diagrams, Lyapunov exponent spectra, phase portraits, time-domain waveforms, and basins of attraction. To validate its practicality and reliability, a hardware platform is created using a Microcontroller Unit (MCU), and hardware experiments confirm the model’s complex dynamic behaviors. Based on this model, an efficient IoMT data privacy protection method is designed by utilizing the complex chaotic properties of the dual-memristor brain-like chaotic neural network. A comprehensive security analysis of the encryption of colored medical image data is also performed.  Results and Discussions  The results demonstrate that the proposed network not only exhibits complex grid-like multi-structure chaotic attractors but also possesses the capability to regulate planar initial condition displacements, significantly enhancing its potential for cryptographic applications. Experimental findings indicate that this method performs exceptionally well across key metrics, including a large key space, low pixel correlation, high key sensitivity, and strong robustness against noise and data loss attacks.  Conclusions  This study presents an innovative and effective solution for protecting medical data privacy in IoMT environments, providing a solid foundation for the development of secure technologies in intelligent healthcare systems.
  • loading
  • [1]
    GHUBAISH A, SALMAN T, ZOLANVARI M, et al. Recent advances in the internet-of-medical-things (IoMT) systems security[J]. IEEE Internet of Things Journal, 2021, 8(11): 8707–8718. doi: 10.1109/JIOT.2020.3045653.
    [2]
    AHMED S F, ALAM M S B, AFRIN S, et al. Insights into internet of medical things (IoMT): Data fusion, security issues and potential solutions[J]. Information Fusion, 2024, 102: 102060. doi: 10.1016/J.INFFUS.2023.102060.
    [3]
    陈友荣, 陈浩, 韩蒙, 等. 基于信用等级划分的医疗数据安全共识算法[J]. 电子与信息学报, 2022, 44(1): 279–287. doi: 10.11999/JEIT200893.

    CHEN Yourong, CHEN Hao, HAN Meng, et al. Security consensus algorithm of medical data based on credit rating[J]. Journal of Electronics & Information Technology, 2022, 44(1): 279–287. doi: 10.11999/JEIT200893.
    [4]
    JAVAID M, HALEEM A, SINGH R P, et al. Towards insighting cybersecurity for healthcare domains: A comprehensive review of recent practices and trends[J]. Cyber Security and Applications, 2023, 1: 100016. doi: 10.1016/J.CSA.2023.100016.
    [5]
    ZHANG Bowen and LIU Lingfeng. Chaos-based image encryption: Review, application, and challenges[J]. Mathematics, 2023, 11(11): 2585. doi: 10.3390/math11112585.
    [6]
    LIU Huipeng, TENG Lin, ZHANG Yijia, et al. Mutil-medical image encryption by a new spatiotemporal chaos model and DNA new computing for information security[J]. Expert Systems with Applications, 2024, 235: 121090. doi: 10.1016/j.eswa.2023.121090.
    [7]
    MAN Zhenlong, GAO Chang, DAI Yu, et al. Dynamic rotation medical image encryption scheme based on improved Lorenz chaos[J]. Nonlinear Dynamics, 2024, 112(15): 13571–13597. doi: 10.1007/s11071-024-09732-3.
    [8]
    周双, 尹彦力, 王诗雨, 等. n维离散超混沌系统及其在音频加密中的应用[J]. 物理学报, 2024, 73(21): 210501. doi: 10.7498/aps.73.20241028.

    ZHOU Shuang, YIN Yanli, WANG Shiyu, et al. An n-dimensional discrete hyperchaotic system and its application in audio encryption[J]. Acta Physica Sinica, 2024, 73(21): 210501. doi: 10.7498/aps.73.20241028.
    [9]
    HUA Zhongyun, ZHU Zhihua, YI Shuang, et al. Cross-plane colour image encryption using a two-dimensional logistic tent modular map[J]. Information Sciences, 2021, 546: 1063–1083. doi: 10.1016/j.ins.2020.09.032.
    [10]
    BAO Han, HUA Zhongyun, WANG Ning, et al. Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation[J]. IEEE Transactions on Industrial Informatics, 2021, 17(2): 1132–1140. doi: 10.1109/TII.2020.2992438.
    [11]
    LI Chengqing, TAN Kai, FENG Bingbing, et al. The graph structure of the generalized discrete Arnold's cat map[J]. IEEE Transactions on Computers, 2022, 71(2): 364–377. doi: 10.1109/TC.2021.3051387.
    [12]
    FENG W, WANG Q, LIU H, et al. Exploiting newly designed fractional-order 3D Lorenz chaotic system and 2D discrete polynomial hyper-chaotic map for high-performance multi-image encryption[J]. Fractal and Fractional, 2023, 7(12): 887. doi: 10.3390/fractalfract7120887.
    [13]
    STANKEVICH N and VOLKOV E. Chaos–hyperchaos transition in three identical quorum-sensing mean-field coupled ring oscillators[J]. Chaos, 2021, 31(10): 103112. doi: 10.1063/5.0056907.
    [14]
    李春彪, 李泳新, 仲庆, 等. 忆阻超混沌映射的可调控性设计及光纤保密通信系统构建[J]. 通信学报, 2024, 45(4): 171–184. doi: 10.11959/j.issn.1000-436x.2024086.

    LI Chunbiao, LI Yongxin, ZHONG Qing, et al. Controllability design of a memristive hyperchaotic map and the construction of optical fiber secure communication system[J]. Journal on Communications, 2024, 45(4): 171–184. doi: 10.11959/j.issn.1000-436x.2024086.
    [15]
    LAI Qiang and CHEN Zhijie. Grid-scroll memristive chaotic system with application to image encryption[J]. Chaos, Solitons & Fractals, 2023, 170: 113341. doi: 10.1016/j.chaos.2023.113341.
    [16]
    HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088–3092. doi: 10.1073/pnas.81.10.3088.
    [17]
    STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932.
    [18]
    董哲康, 杜晨杰, 林辉品, 等. 基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法[J]. 电子与信息学报, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868.

    DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868.
    [19]
    SCHRANGHAMER T F, OBEROI A, and DAS S. Graphene memristive synapses for high precision neuromorphic computing[J]. Nature Communications, 2020, 11(1): 5474. doi: 10.1038/s41467-020-19203-z.
    [20]
    YAO Wei, WANG Chunhua, SUN Yichuang, et al. Event-triggered control for robust exponential synchronization of inertial memristive neural networks under parameter disturbance[J]. Neural Networks, 2023, 164: 67–80. doi: 10.1016/j.neunet.2023.04.024.
    [21]
    HE Shaobo, LIU Jun, WANG Huihai, et al. A discrete memristive neural network and its application for character recognition[J]. Neurocomputing, 2023, 523: 1–8. doi: 10.1016/J.NEUCOM.2022.12.014.
    [22]
    CHEN Chengjie, MIN Fuhong, CAI Jianming, et al. Memristor synapse-driven simplified Hopfield neural network: Hidden dynamics, attractor control, and circuit implementation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(5): 2308–2319. doi: 10.1109/TCSI.2024.3349451.
    [23]
    LAI Qiang, WAN Zhiqiang, and KUATE P D K. Generating grid multi-scroll attractors in memristive neural networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(3): 1324–1336. doi: 10.1109/TCSI.2022.3228566.
    [24]
    HUANG Lilian, ZHANG Yue, XIANG Jianhong, et al. Extreme multistability in a Hopfield neural network based on two biological neuronal systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(11): 4568–4572. doi: 10.1109/TCSII.2022.3183340.
    [25]
    王梦蛟, 杨琛, 贺少波, 等. 一种新型复合指数型局部有源忆阻器耦合的Hopfield神经网络[J]. 物理学报, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888.

    WANG Mengjiao, YANG Chen, HE Shaobo, et al. A novel compound exponential locally active memristor coupled Hopfield neural network[J]. Acta Physica Sinica, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888.
    [26]
    YU Fei, SHEN Hui, YU Qiulin, et al. Privacy protection of medical data based on multi-scroll memristive Hopfield neural network[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(2): 845–858. doi: 10.1109/TNSE.2022.3223930.
    [27]
    LIN Hairong, WANG Chunhua, XU Cong, et al. A memristive synapse control method to generate diversified multistructure chaotic attractors[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(3): 942–955. doi: 10.1109/TCAD.2022.3186516.
    [28]
    LAI Qiang, YANG Liang, HU Genwen, et al. Constructing multiscroll memristive neural network with local activity memristor and application in image encryption[J]. IEEE Transactions on Cybernetics, 2024, 54(7): 4039–4048. doi: 10.1109/TCYB.2024.3377011.
    [29]
    RANI N, SHARMA S R, and MISHRA V. Grayscale and colored image encryption model using a novel fused magic cube[J]. Nonlinear Dynamics, 2022, 108(2): 1773–1796. doi: 10.1007/s11071-022-07276-y.
    [30]
    LI Xiaoxiao, GUO Xiaopeng, HAN Pengfei, et al. Laplacian redecomposition for multimodal medical image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6880–6890. doi: 10.1109/TIM.2020.2975405.
    [31]
    ANAND A. A dimensionality reduction-based approach for secured color image watermarking[J]. Soft Computing, 2024, 28(6): 5137–5154. doi: 10.1007/s00500-023-09233-2.
    [32]
    MA Jun, HE Yuting, LI Feifei, et al. Segment anything in medical images[J]. Nature Communications, 2024, 15(1): 654. doi: 10.1038/s41467-024-44824-z.
    [33]
    GUAN Hao and LIU Mingxia. Domain adaptation for medical image analysis: A survey[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(3): 1173–1185. doi: 10.1109/TBME.2021.3117407.
    [34]
    ZHOU Nanrun, HU Longlong, HUANG Zhiwen, et al. Novel multiple color images encryption and decryption scheme based on a bit-level extension algorithm[J]. Expert Systems with Applications, 2024, 238: 122052. doi: 10.1016/j.eswa.2023.122052.
    [35]
    宋昭阳, 王一诺, 王浩文, 等. 基于Hopfield网络“伪吸引子”与交替量子随机行走的抗攻击彩色图像加密方案[J]. 电子学报, 2023, 51(8): 2030–2042. doi: 10.12263/DZXB.20211391.

    SONG Zhaoyang, WANG Yinuo, WANG Haowen, et al. Anti-attack color image encryption scheme based on hopfield network “Pseudo Attractor” and alternating quantum random walk[J]. Acta Electronica Sinica, 2023, 51(8): 2030–2042. doi: 10.12263/DZXB.20211391.
    [36]
    TENG Lin, WANG Xingyuan, YANG Feifei, et al. Color image encryption based on cross 2D hyperchaotic map using combined cycle shift scrambling and selecting diffusion[J]. Nonlinear Dynamics, 2021, 105(2): 1859–1876. doi: 10.1007/s11071-021-06663-1.
    [37]
    董哲康, 钱智凯, 周广东, 等. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.

    DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, et al. Memory circuit design, implementation and analysis based on memristor full-function Pavlov associative[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(7)

    Article Metrics

    Article views (371) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return