Citation: | SONG Zihao, ZHOU Yan, CAI Yichao, CHENG Wei, YUAN Kai, LI Hui. Aerial Target Intention Recognition Method Integrating Information Classification Processing and Multi-scale Embedding Graph Robust Learning with Noisy Labels[J]. Journal of Electronics & Information Technology, 2025, 47(5): 1418-1433. doi: 10.11999/JEIT241074 |
[1] |
AHMED A A and MOHAMMED M F. SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network[J]. Journal of Computational Science, 2018, 25: 467–473. doi: 10.1016/j.jocs.2017.09.007.
|
[2] |
AKRIDGE C. On advanced template-based interpretation as applied to intention recognition in a strategic environment[D]. [Master dissertation], University of Central Florida, 2007.
|
[3] |
GONZALEZ A J, GERBER W J, DEMARA R F, et al. Context-driven near-term intention recognition[J]. The Journal of Defense Modeling and Simulation, 2004, 1(3): 153–170. doi: 10.1177/875647930400100303.
|
[4] |
CHARNIAK E and GOLDMAN R P. A Bayesian model of plan recognition[J]. Artificial Intelligence, 1993, 64(1): 53–79. doi: 10.1016/0004-3702(93)90060-O.
|
[5] |
YU Quan, SONG Jinyu, YU Xiaohan, et al. To solve the problems of combat mission predictions based on multi-instance genetic fuzzy systems[J]. The Journal of Supercomputing, 2022, 78(12): 14626–14647. doi: 10.1007/s11227-022-04388-5.
|
[6] |
SVENMARCKT P and DEKKER S. Decision support in fighter aircraft: From expert systems to cognitive modelling[J]. Behaviour & Information Technology, 2003, 22(3): 175–184. doi: 10.1080/0144929031000109755.
|
[7] |
MENG Guanglei, ZHAO Runnan, WANG Biao, et al. Target tactical intention recognition in multiaircraft cooperative air combat[J]. International Journal of Aerospace Engineering, 2021, 2021: 9558838. doi: 10.1155/2021/9558838.
|
[8] |
TRABOULSI A and BARBEAU M. Recognition of drone formation intentions using supervised machine learning[C]. 2019 International Conference on Computational Science and Computational Intelligence, Las Vegas, USA, 2019: 408–411. doi: 10.1109/CSCI49370.2019.00079.
|
[9] |
胡智勇, 刘华丽, 龚淑君, 等. 基于随机森林的目标意图识别[J]. 现代电子技术, 2022, 45(19): 1–8. doi: 10.16652/j.issn.1004-373x.2022.19.001.
HU Zhiyong, LIU Huali, GONG Shujun, et al. Target intention recognition based on random forest[J]. Modern Electronics Technique, 2022, 45(19): 1–8. doi: 10.16652/j.issn.1004-373x.2022.19.001.
|
[10] |
ZHANG Chenhao, ZHOU Yan, LI Hui, et al. Combat intention recognition of air targets based on 1DCNN-BiLSTM[J]. IEEE Access, 2023, 11: 134504–134516. doi: 10.1109/ACCESS.2023.3337640.
|
[11] |
ZHANG Zhuo, WANG Hongfei, JIANG Wen, et al. A target intention recognition method based on information classification processing and information fusion[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107412. doi: 10.1016/j.engappai.2023.107412.
|
[12] |
CHENG Cheng, LIU Xiaoyu, ZHOU Beitong, et al. Intelligent fault diagnosis with noisy labels via semisupervised learning on industrial time series[J]. IEEE Transactions on Industrial Informatics, 2023, 19(6): 7724–7732. doi: 10.1109/TII.2022.3229130.
|
[13] |
ZHANG Hongyi, CISSÉ M, DAUPHIN Y N, et al. Mixup: Beyond empirical risk minimization[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[14] |
ARAZO E, ORTEGO D, ALBERT P, et al. Unsupervised label noise modeling and loss correction[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 312–321.
|
[15] |
HAN Bo, YAO Quanming, YU Xingrui, et al. Co-teaching: Robust training of deep neural networks with extremely noisy labels[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 8536–8546.
|
[16] |
HAN Bo, NIU Gang, YU Xingrui, et al. SIGUA: Forgetting may make learning with noisy labels more robust[C]. The 37th International Conference on Machine Learning, 2020: 4006–4016.
|
[17] |
CASTELLANI A, SCHMITT S, and HAMMER B. Estimating the electrical power output of industrial devices with end-to-end time-series classification in the presence of label noise[C]. Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases. Bilbao, Spain, 2021: 469–484. doi: 10.1007/978-3-030-86486-6_29.
|
[18] |
LI Shikun, XIA Xiaobo, GE Shiming, et al. Selective-supervised contrastive learning with noisy labels[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 316–325. doi: 10.1109/CVPR52688.2022.00041.
|
[19] |
MA Peitian, LIU Zhen, ZHENG Junhao, et al. CTW: Confident time-warping for time-series label-noise learning[C]. The 32nd International Joint Conference on Artificial Intelligence, Macao, China, 2023: 4046–4054. doi: 10.24963/ijcai.2023/450.
|
[20] |
魏琦, 孙皓亮, 马玉玲, 等. 面向标签噪声的联合训练框架[J]. 中国科学: 信息科学, 2024, 54(1): 144–158. doi: 10.1360/SSI-2022-0395.
WEI Qi, SUN Haoliang, MA Yuling, et al. A joint training framework for learning with noisy labels[J]. SCIENTIA SINICA Informationis, 2024, 54(1): 144–158. doi: 10.1360/SSI-2022-0395.
|
[21] |
LIANG Xuefeng, LIU Xingyu, and YAO Longshan. Review–a survey of learning from noisy labels[J]. ECS Sensors Plus, 2022, 1(2): 021401. doi: 10.1149/2754-2726/ac75f5.
|
[22] |
SHAN Yuxiang, LU Hailiang, and LOU Weidong. A hybrid attention and dilated convolution framework for entity and relation extraction and mining[J]. Scientific Reports, 2023, 13(1): 17062. doi: 10.1038/s41598-023-40474-1.
|
[23] |
CHEN Wei and SHI Ke. Multi-scale attention convolutional neural network for time series classification[J]. Neural Networks, 2021, 136: 126–140. doi: 10.1016/j.neunet.2021.01.001.
|
[24] |
ZHANG Yitian, MA Liheng, PAL S, et al. Multi-resolution time-series transformer for long-term forecasting[C]. The 27th International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 2024: 4222–4230.
|
[25] |
BISCHOF B and BUNCH E. Geometric feature performance under downsampling for EEG classification tasks[J]. arXiv: 2102.07669, 2021. doi: 10.48550/arXiv.2102.07669.
|
[26] |
LI Junnan, WONG Yongkang, ZHAO Qi, et al. Learning to learn from noisy labeled data[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5046–5054. doi: 10.1109/CVPR.2019.00519.
|
[27] |
XIA Xiaobo, LIU Tongliang, HAN Bo, et al. Sample selection with uncertainty of losses for learning with noisy labels[C]. The Tenth International Conference on Learning Representations, 2022.
|
[28] |
GUI Xianjin, WANG Wei, and TIAN Zhanghao. Towards understanding deep learning from noisy labels with small-loss criterion[C]. The Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, 2021: 2469–2475.
|
[29] |
王晓莉, 薛丽. 标签噪声学习算法综述[J]. 计算机系统应用, 2021, 30(1): 10–18. doi: 10.15888/j.cnki.csa.007776.
WANG Xiaoli and XUE Li. Review on label noise learning algorithms[J]. Computer Systems & Applications, 2021, 30(1): 10–18. doi: 10.15888/j.cnki.csa.007776.
|
[30] |
崔瑞博, 王峰. 动量更新与重构约束的限制视角下3D物品识别[J]. 华东师范大学学报(自然科学版), 2023(6): 61–72. doi: 10.3969/j.issn.1000-5641.2023.06.006.
CUI Ruibo and WANG Feng. Momentum-updated representation with reconstruction constraint for limited-view 3D object recognition[J]. Journal of East China Normal University (Natural Science), 2023(6): 61–72. doi: 10.3969/j.issn.1000-5641.2023.06.006.
|
[31] |
邓琨, 李文平, 陈丽, 等. 一种新的基于标签传播的复杂网络重叠社区识别算法[J]. 控制与决策, 2020, 35(11): 2733–2742. doi: 10.13195/j.kzyjc.2019.0176.
DENG Kun, LI Wenping, CHEN Li, et al. A novel algorithm for overlapping community detection based on label propagation in complex networks[J]. Control and Decision, 2020, 35(11): 2733–2742. doi: 10.13195/j.kzyjc.2019.0176.
|
[32] |
XIE Jierui, SZYMANSKI B K, and LIU Xiaoming. SLPA: Uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process[C]. The 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, Canada, 2011: 344–349. doi: 10.1109/ICDMW.2011.154.
|
[33] |
ZHANG Bowen, WANG Yidong, HOU Wenxin, et al. FlexMatch: Boosting semi-supervised learning with curriculum pseudo labeling[C]. The 35th International Conference on Neural Information Processing Systems, Red Hook, USA, 2024: 1407.
|
[34] |
SONG Zihao, ZHOU Yan, CHENG Wei, et al. Robust air target intention recognition based on weight self-learning parallel time-channel transformer encoder[J]. IEEE Access, 2023, 11: 144760–144777. doi: 10.1109/ACCESS.2023.3341154.
|
[35] |
WANG Jingdong, WANG Fei, ZHANG Changshui, et al. Linear neighborhood propagation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1600–1615. doi: 10.1109/TPAMI.2008.216.
|
[36] |
WANG Zhiguang, YAN Weizhong, and OATES T. Time series classification from scratch with deep neural networks: A strong baseline[C]. 2017 International Joint Conference on Neural Networks, Anchorage, USA, 2017: 1578–1585. doi: 10.1109/IJCNN.2017.7966039.
|