Citation: | SHU Feng, ZHANG Junhao, ZHANG Qi, YAO Yu, BIAN Hongyi, WANG Xianpeng. Hybrid Reflecting Intelligent Surface Assisted Sensing Communication and Computation for Joint Power and Time Allocation in Vehicle Ad-hoc Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240719 |
[1] |
MENG Kaitao, WU Qingqing, CHEN Wen, et al. Sensing-assisted communication in vehicular networks with intelligent surface[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 876–893. doi: 10.1109/TVT.2023.3307100.
|
[2] |
TAN Xiaobin, MENG Qiushi, WANG Mingyang, et al. Digital twin-based cloud-native vehicular networks architecture for intelligent driving[J]. IEEE Network, 2024, 38(1): 69–76. doi: 10.1109/MNET.2023.3337271.
|
[3] |
HASAN M, MOHAN S, SHIMIZU T, et al. Securing Vehicle-to-Everything (V2X) communication platforms[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 693–713. doi: 10.1109/TIV.2020.2987430.
|
[4] |
LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
|
[5] |
PEI Yiyang, HOANG A T, and LIANG Yingchang Sensing-throughput tradeoff in cognitive radio networks: How frequently should spectrum sensing be carried out[C]. Proceedings of the 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2017: 1–5. doi: 10.1109/PIMRC.2007.4394632.
|
[6] |
SINGH K, BISWAS S, RATNARAJAH T, et al. Transceiver design and power allocation for full-duplex MIMO communication systems with spectrum sharing radar[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 556–566. doi: 10.1109/TCCN.2018.2830758.
|
[7] |
DUGGAL G, RAM S S, and MISHRA K V. Micro-range detection via Doppler-resilient 802.11ad-based vehicle-to-pedestrian radar[C]. Proceedings of 2019 IEEE Radar Conference, Boston, USA, 2019: 1–6. doi: 10.1109/RADAR.2019.8835525.
|
[8] |
HASHIDA H, KAWAMOTO Y, KATO N, et al. Mobility-aware user association strategy for IRS-aided mm-Wave multibeam transmission towards 6G[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(5): 1667–1678. doi: 10.1109/JSAC.2022.3143216.
|
[9] |
VERMA S, KAWAMOTO Y, and KATO N. A network-aware internet-wide scan for security maximization of IPv6-enabled WLAN IoT devices[J]. IEEE Internet of Things Journal, 2021, 8(10): 8411–8422. doi: 10.1109/JIOT.2020.3045733.
|
[10] |
WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
|
[11] |
LYU Bin, HOANG D T, GONG Shimin, et al. IRS-based wireless jamming attacks: When jammers can attack without power[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1663–1667. doi: 10.1109/LWC.2020.3000892.
|
[12] |
CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi 10.1038/lsa.2014.99.
|
[13] |
BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE Access, 2019, 7: 116753–116773. doi: 10.1109/ACCESS.2019.2935192.
|
[14] |
仲伟志, 何艺, 段洪涛, 等. 可重构智能表面辅助的V2I通信系统联合波束赋形算法[J]. 电子与信息学报, 2024, 46(8): 3117–3125. doi: 10.11999/JEIT231324.
ZHONG Weizhi, HE Yi, DUAN Hongtao, et al. Joint beamforming algorithm for reconfigurable intelligent surface-aided V2I communication system[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3117–3125. doi: 10.11999/JEIT231324.
|
[15] |
NGUYEN N T, VU Q D, LEE K, et al. Hybrid relay-reflecting intelligent surface-assisted wireless communications[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6228–6244. doi: 10.1109/TVT.2022.3158686.
|
[16] |
BJÖRNSON E, ÖZDOGAN Ö, and LARSSON E G. Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying[J]. IEEE Wireless Communications Letters, 2020, 9(2): 244–248. doi: 10.1109/LWC.2019.2950624.
|
[17] |
HUANG Ao, GUO Li, MU Xidong, et al. Coexisting passive RIS and active relay-assisted NOMA systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 1948–1963. doi: 10.1109/TWC.2022.3208006.
|
[18] |
LI Qiang, BAI Song, LI Jun, et al. RIS-assisted joint active and passive transmission with distributed reception[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6805–6809. doi: 10.1109/TVT.2022.3229494.
|
[19] |
NGUYEN N T, NGUYEN V D, VAN NGUYEN H, et al. Fairness enhancement of UAV systems with hybrid active-passive RIS[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4379–4396. doi: 10.1109/TWC.2023.3317934.
|
[20] |
LIU Zhipeng, LI Xi, JI Hong, et al. Toward STAR-RIS-empowered integrated sensing and communications: Joint active and passive beamforming design[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 15991–16005. doi: 10.1109/TVT.2023.3294338.
|
[21] |
ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
|
[22] |
JEBBAR Y, PROMWONGSA N, BELQASMI F, et al. A case study on the deployment of a tactile internet application in a hybrid cloud, edge, and mobile ad hoc cloud environment[J]. IEEE Systems Journal, 2022, 16(1): 1182–1193. doi: 10.1109/JSYST.2021.3074095.
|
[23] |
董裕民, 张静, 谢昌佐, 等. 云边端架构下边缘智能计算关键问题综述: 计算优化与计算卸载[J]. 电子与信息学报, 2024, 46(3): 765–776. doi: 10.11999/JEIT230390.
DONG Yumin, ZHANG Jing, XIE Changzuo, et al. A survey of key issues in edge intelligent computing under cloud-edge-terminal architecture: Computing optimization and computing offloading[J]. Journal of Electronics & Information Technology, 2024, 46(3): 765–776. doi: 10.11999/JEIT230390.
|
[24] |
DAI Penglin, HU Kaiwen, WU Xiao, et al. A probabilistic approach for cooperative computation offloading in MEC-assisted vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 899–911. doi: 10.1109/TITS.2020.3017172.
|
[25] |
LIU Qian, LIANG Hairong, LUO Rui, et al. Energy-efficiency computation offloading strategy in UAV aided V2X network with integrated sensing and communication[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1337–1346. doi: 10.1109/OJCOMS.2022.3195703.
|
[26] |
MICHAILIDIS E T, VOLAKAKI M G, MIRIDAKIS N I, et al. Optimization of secure computation efficiency in UAV-enabled RIS-assisted MEC-IoT networks with aerial and ground eavesdroppers[J]. IEEE Transactions on Communications, 2024, 72(7): 3994–4009. doi: 10.1109/TCOMM.2024.3372877.
|
[27] |
XIE Hao, LI Dong, and GU Bowen. Exploring hybrid active-passive RIS-aided MEC systems: From the mode-switching perspective[J]. IEEE Transactions on Wireless Communications, 2024, 23(9): 11291–11308. doi: 10.1109/TWC.2024.3380841.
|
[28] |
BIAN Mengqi, SHI Yunmei, HUANG Yi, et al. QoS-aware energy storage maximization in the RIS-aided joint-SWIPT-MEC system[J]. IEEE Communications Letters, 2023, 27(12): 3434–3438. doi: 10.1109/LCOMM.2023.3324716.
|
[29] |
MALIK R and VU M. Optimal transmission using a self-sustained relay in a full-duplex MIMO system[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(2): 374–390. doi: 10.1109/JSAC.2018.2872617.
|
[30] |
XU Sai, DU Yanan, ZHANG Jiliang, et al. An IRS backscatter enabled integrated sensing, communication and computation system[J]. arXiv: 2207.10219, 2022. (查阅网上资料, 请核对文献类型及格式) .
|
[31] |
姜南. 基于雷达检测的认知车联网关键技术研究[D]. [硕士论文], 北京邮电大学, 2020.
JIANG Nan. Research on key technologies of cognitive vehicular ad hoc network based on radar detection[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2020.
|
[32] |
GRANT M and BOYD S. CVX: MATLAB software for disciplined convex programming, Version 2.2[EB/OL]. http://cvxr.com/cvx, 2020. (查阅网上资料,请核对作者信息) .
|
[33] |
BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. (查阅网上资料, 未找到对应的页码信息, 请确认) .
|
[34] |
BEN-TAL A and NEMIROVSKI A. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications[M]. Philadelphia: SIAM, 2001. (查阅网上资料, 未找到对应的页码信息, 请确认) .
|
[35] |
WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
|
[36] |
徐勇军, 谷博文, 谢豪, 等. 全双工中继协作下的移动边缘计算系统能耗优化算法[J]. 电子与信息学报, 2021, 43(12): 3621–3628. doi: 10.11999/JEIT200937.
XU Yongjun, GU Bowen, XIE Hao, et al. Energy consumption optimization algorithm for full-duplex relay-assisted mobile edge computing systems[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3621–3628. doi: 10.11999/JEIT200937.
|
[37] |
3GPP. Study on LTE-based V2X services; (Release 14)[R]. document TR 36.885 V14.0. 0, 2016.
|
[38] |
CHEN Yuanbin, WANG Ying, LIU Man, et al. Network slicing enabled resource management for service-oriented ultra-reliable and low-latency vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7847–7862. doi: 10.1109/TVT.2020.2991723.
|