Citation: | DING Yonggang, LI Shijun, FU Xing, LIU Mengjun. Temporal-aware Multi-category Products Recommendation Model Based on Aspect-level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1453-1460. doi: 10.11999/JEIT170938 |
PERO and HORVAT T. Opinion-driven matrix factorization for rating prediction[C]. Proceedings of User Mode-ling, Adaptation, and Personalization, Rome, Italy, 2013: 1-13. doi: 10.1007/978-3-642-38844-6_1.
|
LEUNG W K, CHAN C F and CHUNG F L. Integrating collaborative filtering and sentiment analysis: A rating inference approach[C]. Proceedings of European Conference on Artificial Intelligence Workshop, Riva del Garda, 2006: 300-307.
|
SCHOUTEN K and FRASINCAR F. Survey on aspect-level sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3): 813-830. doi: 10.1109/TKDE. 2015.2485209.
|
WANG Feng and CHEN Li. Review mining for estimating users ratings and weights for product aspects[J]. Web Intelligence, 2015, 13(3): 137-152. doi: 10.3233/WEB-150317.
|
OU W and HUYNH V N. Rating supervised latent topic model for aspect discovery and sentiment classification in on-line review mining[C]. Proceedings of 13th International Conference on Modeling Decisions for Artificial Intelligence, Sant Juli de Lria, Andorra, 2016: 151-164. doi: 10.1007 /978-3- 319-45656-0_13.
|
MUSTO C, DE GEMMIS M, SEMERARO G, et al. A multi-criteria recommender system exploiting aspect-based sentiment analysis of users, reviews[C]. Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 2017: 321-325. doi: 10.1145/3109859.3109905.
|
ZHANG Yongfeng, ZHANG Haochen, and ZHANG Min, et al. Do users rate or review? boost phrase-level sentiment labeling with review-level sentiment classification[C]. Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, Australia, 2014: 1027-1030.
|
WANG Shuai, CHEN Zhiyuan, and LIU Bing. Mining aspect- specific opinion using a holistic lifelong topic model[C]. Proceedings of the 25th International Conference on World Wide Web, Montreal, Canada, 2016: 167-176. doi: 10.1145/ 2872427.2883086.
|
ZHANG Yongfeng, LAI Guokun, ZHANG Min, et al. Explicit factor models for explainable recommendation based on phrase-level sentiment analysis[C]. Proceeding of The 37th International ACM SIGIR Conference on Research Development in Information Retrieval. Gold Coast, Australia, 2014: 83-92. doi: 10.1145/2600428.2609579.
|
CHEN Xu, XU Tao, ZHANG Yongfeng, et al. Learning to rank features for recommendation over multiple categories[C]. Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Pisa, Italy, 2016: 305-314. doi: 10.1145/2911451.2911549.
|
WU Yao and ESTER M. FLAME: A probabilistic model combining aspect based opinion mining and collaborative filtering[C]. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, Shanghai, China, 2015: 199-208. doi: 10.1145/2684822.2685291.
|
BAUMAN K, LIU Bing, and TUZHILIN A. Aspect based recommendations: recommending items with the most valuable aspects based on user reviews[C]. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 717-725. doi: 10.1145 /3097983.3098170.
|
HE Yulan, LIN Chenghua, GAO Wei, et al. Dynamic joint sentiment-topic model[J]. ACM Transactions on Intelligent Systems Technology, 2014, 5(1): 1-21.
|
DERMOUCHE M, VELCIN J, KHOUAS L, et al. A Joint model for topic-sentiment evolution over time[C]. Proceedings of 2014 IEEE International Conference on Data Mining, Shenzhen, China, 2014: 773-778. doi: 10.1109/ICDM. 2014.82.
|
HU Yan, XU Xiaofei, and LI Li. Analyzing topic-sentiment and topic evolution over time from social media[C]. Proceedings of the 9th International Conference on Knowledge Science, Engineering and Management, Passau, Germany, 2016: 97-109. doi: 10.1007/978-3-319-47650-6_8.
|
KOREN Y. Collaborative filtering with temporal dynamics [C]. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 2009: 447-456. doi: 10.1145/1557019.1557072.
|
XIONG Liang, CHEN Xi, and HUANG Tzukuo, et al. Temporal collaborative filtering with bayesian probabilistic tensor factorization[C]. Proceedings of the SIAM International Conference on Data Mining, Columbus, USA, 2010: 211-222.
|
RAFAILIDIS D and NANOPOULOS A. Modeling users preference dynamics and side information in recommender systems[J]. IEEE Transactions on Systems, Man, Cybernetics: Systems, 2016, 46(6): 782-792.
|
LIU Xin. Modeling users, dynamic preference for personalized recommendation[C]. Proceedings of the Twenty- Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 1785-1791. doi: 10.1137/1.9781611972801.19.
|
SHANG Yanmin, XU Kefu, ZHANG Chuang, et al. FTM: Recommending the right items for user temporal interests with matrix factorization through topic model[C]. Proceedings of the IEEE First International Conference on Data Science in Cyberspace, Changsha, China, 2017: 189-198. doi: 10.1109/DSC.2016.20.
|
MNIH A and SALAKHUTDINOV R. Probabilistic matrix factorization[C]. Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1257-1264.
|