Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
YUAN Yazhou, SUN Xiaoqin, LI Yuefeng, GUAN Xinping. Positioning and Calibration Method of Underground Personnel Based on Priori Features[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1323-1329. doi: 10.11999/JEIT170749
Citation: YUAN Yazhou, SUN Xiaoqin, LI Yuefeng, GUAN Xinping. Positioning and Calibration Method of Underground Personnel Based on Priori Features[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1323-1329. doi: 10.11999/JEIT170749

Positioning and Calibration Method of Underground Personnel Based on Priori Features

doi: 10.11999/JEIT170749
Funds:

The Natural Science Foundation of Hebei Province (F2017203084), The Postdoctoral Priority Funding of Hebei Province (B2017003009)

  • Received Date: 2017-07-25
  • Rev Recd Date: 2018-03-02
  • Publish Date: 2018-06-19
  • Focusing on the problem that the personnel positioning methods are seriously influenced by the indoor environment, big cumulative error and other issues, a method is proposed to correct the position, which combines the prior knowledge of the map and the heading recognition. Firstly, the dimension of the feature set is reduced by Linear Discriminant Analysis (LDA). Then, the heading of the underground personnel is classified and the special points are marked through combining Random Forest (RF) and the method of setting a threshold value. Finally, the movement trajectory of the underground personnel, which is obtained by the Pedestrian Dead Reckoning (PDR) algorithm, is corrected and updated by matching the special point with the prior knowledge of the roadway structure. The experimental results show that the pre-processing method of LDA can effectively improve the precision of the classifier by more than 6%. The proposed method can effectively reduce the cumulative error, with high accuracy and robustness. The activity recognition accuracy can reach 98%, which can achieve reliable real- time location.
  • loading
  • El ASSAF A, ZAIDI S, AFFES S, et al. Accurate sensors localization in underground mines or tunnels[C]. IEEE International Conference on Ubiquitous Wireless Broadband, Montreal, Canada, 2015: 1-6. doi: 10.1109/ICUWB.2015. 7324418.
    刘文远, 吕倩, 王林, 等. 基于动态地标的在线室内平面图生成方法[J]. 电子与信息学报, 2016, 38(6): 1519-1527. doi: 10.11999/JEIT150926.
    LIU Wenyuan, L Qian, WANG Lin, et al. Multidimensional fingerprints method for indoor mobile trajectory mapping with geomagnetic information[J]. Journal of Electronics Information Technology, 2016, 38(6): 1519-1527. doi: 10.11999/JEIT150926.
    YE Y, ZHANG L, SONG X, et al. A novel coal mine security monitoring system based on ZigBee[C]. International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, Vietnam, 2015: 39-42. doi: 10.1109/ ICITBS.2015.16.
    MI J and TAKAHASHI Y. Low cost design of HF-band RFID system for mobile robot self-localization based on multiple readers and tags[C]. IEEE International Conference on Robotics and Biomimetics, Zhuhai, China, 2015: 194-199. doi: 10.1109/ROBIO.2015.7418766.
    LI J and LIU H P. A new weighted centroid localization algorithm in coal Mine wireless sensor networks[C]. International Conference on Computer Research and Development, Shanghai, China, 2011: 106-109. doi: 10.1109 /ICCRD.2011.5764256.
    WANG Jie, GAO Qinghua, YU Yan, et al. Toward robust indoor localization based on bayesian filter using chirp- spread-spectrum ranging[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1622-1629. doi: 10.1109/TIE.2011. 2165462.
    WANG Jie, GAO Qinghua, Pan Miao, et al. Toward accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665-6677. doi: 10.1109/TVT.2015.2476495.
    FAN Qigao, SUN Biwen, SUN Yan, et al. Performance enhancement of MEMS-based INS/UWB integration for indoor navigation applications[J]. IEEE Sensors Journal, 2017, 17(10): 3116-3130. doi: 10.1109/JSEN.2017.2689802.
    谷阳, 宋千, 李杨寰, 等. 基于惯性鞋载传感器的人员自主定位粒子滤波方法[J]. 电子与信息学报, 2015, 37(2): 484-488. doi: 10.11999/JEIT140362.
    GU Yang, SONG Qian, LI Yanghuan, et al. A particle filter method for pedestrian navigation using foot-mounted inertial sensors[J]. Journal of Electronics Information Technology, 2015, 37(2): 484-488. doi: 10.11999/JEIT140362.
    何坚, 万志江, 刘金伟. 基于电源线和位置指纹的室内定位技术[J]. 电子与信息学报, 2014, 36(12): 2902-2908. doi: 10.3724 /SP.J.1146.2013.02022.
    HE Jian, WAN Zhijiang, and LIU Jinwei. Indoor positioning technology based on powerline and location fingerprint[J]. Journal of Electronics Information Technology, 2014, 36(12): 2902-2908. doi: 10.3724/SP.J.1146.2013.02022.
    YUAN Yazhou, CHEN Cailian, GUAN Xinping, et al. An energy-efficient underground localization system based on heterogeneous wireless networks[J]. Sensors, 2015, 15(6): 12358-12376. doi: 10.3390/s150612358.
    INDERST F, PASCUCCI F, and RENAUDIN V. PDR and GPS trajectory parts matching for an improved self- contained personal navigation solution with handheld device[C]. Navigation Conference, Lausanne, Switzerland, 2017: 100-107. doi: 10.1109/EURONAV.2017.7954198.
    ROHRIG C and MULLER M. Localization of sensor nodes in a wireless sensor network using the nanoLOC TRX transceiver[C]. Vehicular Technology Conference, Barcelona, Spain, 2009: 1-5.
    HOF A L. Scaling gait data to body size[J]. Gait Posture, 1996, 4(3): 222-223. doi: 10.1016/0966-6362(95)01057-2
    LI Yili and WONG Konmax. Riemannian distances for signal classification by power spectral density[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 655-669. doi: 10.1109/JSTSP.2013.2260320.
    YANG Jian, ZHANG D, FRANGI A F, et al. Two- dimensional PCA: A new approach to appearance-based face representation and recognition.[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2004, 26(1): 131-137. doi: 10.1109/TPAMI.2004.1261097.
    MARTINEZ A M and KAK A C. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2002, 23(2): 228-233.
    TORRES G A and BENITEZ V H. Finger movements classification from grasping spherical objects with surface electromyography using time domain based features[C]. Mechatronics, Adaptive and Intelligent Systems, Hermosillo, Mexico, 2016. doi: 10.1109/MAIS.2016.7761904.
    SVETNIK V, LIAW A, TONG C, et al. Random forest: A classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information Computer Sciences, 2003, 43(6): 1947-1958. doi: 10.1021/ ci034160g.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1445) PDF downloads(149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return