Citation: | LI Peijia, SHI Yong, WANG Huadong, NIU Lingfeng. Ordered Code-based Kernel Extreme Learning Machine for Ordinal Regression[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1287-1293. doi: 10.11999/JEIT170765 |
NAKOV P, RITTER A, ROSENTHAL S, et al. SemEval- 2016 task 4: Sentiment analysis in Twitter[C]. International Workshop on Semantic Evaluation, San Diego, USA, 2016: 1-18. doi: 10.18653/v1/S16-1028.
|
TIAN Q, CHEN S, and TAN X. Comparative study among three strategies of incorporating spatial structures to ordinal image regression[J]. Neurocomputing, 2014, 136: 152-161. doi: 10.1016/j.neucom.2014.01.017.
|
CORRENTE S, DOUMPOS M, GRECO S, et al. Multiple criteria hierarchy process for sorting problems based on ordinal regression with additive value functions[J]. Annals of Operations Research, 2017, 251(1/2): 117-139. doi: 10.1007/ s10479-015-1898-1.
|
GUTIRREZ P A, PREZ-ORTIZ M, SANCHEZ- MONEDERO J, et al. Ordinal regression methods: Survey and experimental study[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 127-146. doi: 10.1109/ TKDE.2015.2457911.
|
HUANG G B, ZHU Q Y, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501. doi: 10.1016/j.neucom.2005.12.126.
|
RAJASEKARAN S and PAI G A V. Neural Networks, Fuzzy Systems and Evolutionary Algorithms: Synthesis and Applications[M]. Haryana, India: Rajkamal Electric Press, 2017: 151-168.
|
CHU W and KEERTHI S S. Support vector ordinal regression[J]. Neural Computation, 2007, 19(3): 792-815. doi: 10.1162/neco.2007.19.3.792.
|
HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2012, 42(2): 513-529. doi: 10.1109/TSMCB. 2011.2168604.
|
UCAR A, DEMIR Y, and GZELI C. A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering[J]. Neural Computing and Applications, 2016, 27(1): 131-142. doi: 10.1007/s00521-014-1569-1.
|
徐涛, 郭威, 吕宗磊. 基于快速极限学习机和差分进化的机场噪声预测模型[J]. 电子与信息学报, 2016, 38(6): 1512-1518. doi: 10.11999/JEIT150986.
|
XU Tao, GUO Wei, and L Zonglei. Prediction model of airport noise based on fast extreme learning machine and differential evolution[J]. Journal of Electronics Information Technology, 2016, 38(6): 1512-1518. doi: 10.11999/JEIT 150986.
|
GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Massachusetts, USA, MIT Press, 2016: 165-480. doi: 10.1038/nature14539.
|
DENG W Y, ZHENG Q H, LIAN S, et al. Ordinal extreme learning machine[J]. Neurocomputing, 2010, 74(1): 447-456. doi: 10.1016/j.neucom.2010.08.022.
|
RICCARDI A, FERNNDEZ-NAVARRO F, and CARLONI S. Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine[J]. IEEE Transactions on Cybernetics, 2014, 44(10): 1898-1909. doi: 10.1109/TCYB. 2014.2299291.
|
HORNIK K, STINCHCOMBE M, and WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. doi: 10.1016/0893-6080(89) 90020-8.
|
HUANG G B and BABRI H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions[J]. IEEE Transactions on Neural Networks, 1998, 9(1): 224-229. doi: 10.1109/72.655045.
|
HUANG G B, CHEN L, and SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892. doi: 10.1109/TNN. 2006.875977.
|
HUANG G B. Learning capability and storage capacity of two-hidden-layer feedforward networks[J]. IEEE Transactions on Neural Networks, 2003, 14(2): 274-281. doi: 10.1109/TNN.2003.809401.
|
BARTLETT P L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network[J]. IEEE Transactions on Information Theory, 1998, 44(2): 525-536. doi: 10.1109/18.661502.
|
TANG J, DENG C, and HUANG G B. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 809-821. doi: 10.1109/TNNLS.2015.2424995.
|
HOERL A E and KENNARD R W. Ridge regression: Biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67. doi: 10.1080/00401706.1970.10488634.
|
ALLWEIN E L, SCHAPIRE R E, and SINGER Y. Reducing multiclass to binary: A unifying approach for margin classifiers[J]. Journal of Machine Learning Research, 2000, 1(12): 113-141. doi: 10.1162/15324430152733133.
|
雷蕾, 王晓丹, 罗玺, 等. ECOC多类分类研究综述[J]. 电子学报, 2014, 42(9): 1794-1800. doi: 10.3969/j.issn.0372-2112. 2014.09.020.
|
LEI Lei, WANG Xiaodan, LUO Xi, et al. An overview of multi-classification based on error-correcting output codes[J]. Acta Electronica Sinica, 2014, 42(9): 1794-1800. doi: 10.3969 /j.issn.0372-2112.2014.09.020.
|
HUANG G, HUANG G B, SONG S, et al. Trends in extreme learning machines: A review[J]. Neural Networks, 2015, 61: 32-48. doi: 10.1016/j.neunet.2014.10.001.
|
LIU Q, HE Q, and SHI Z. Extreme support vector machine classifier[C]. 12th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Osaka, Japan, 2008: 222-233. doi: 10.1007/978-3-540-68125-0_21.
|
FRNAY B and VERLEYSEN M. Using SVMs with randomised feature spaces: an extreme learning approach[C]. European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 2010: 315-320.
|
HUANG G B, DING X, and ZHOU H. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1): 155-163. doi: 10.1016/j.neucom. 2010.02.019.
|
CHU W and GHAHRAMANI Z. Gaussian processes for ordinal regression[J]. Journal of Machine Learning Research, 2005, 6(7): 1019-1041.
|
BACCIANELLA S, ESULI A, and SEBASTIANI F. Evaluation measures for ordinal regression[C]. The Ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 2009: 283-287. doi: 10.1109/ISDA. 2009.230.
|