Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
XU Sen, HUA Xiaopeng, XU Jing, XU Xiufang, GAO Jun, AN Jing. Cluster Ensemble Approach Based on T-distributed Stochastic Neighbor Embedding[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1316-1322. doi: 10.11999/JEIT170937
Citation: XU Sen, HUA Xiaopeng, XU Jing, XU Xiufang, GAO Jun, AN Jing. Cluster Ensemble Approach Based on T-distributed Stochastic Neighbor Embedding[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1316-1322. doi: 10.11999/JEIT170937

Cluster Ensemble Approach Based on T-distributed Stochastic Neighbor Embedding

doi: 10.11999/JEIT170937
Funds:

The National Natural Science Foundation of China (61105057, 61375001), The Natural Science Foundation of Jiangsu Province (BK20151299), The Industry-Education-Research Prospective Project of Jiangsu Province (BY2016065-01)

  • Received Date: 2017-10-10
  • Rev Recd Date: 2018-03-16
  • Publish Date: 2018-06-19
  • T-distributed Stochastic Neighbor Embedding (TSNE) is introduced into cluster ensemble problem and a cluster ensemble approach based on TSNE is proposed. First, TSNE is utilized to minimize Kullback-Leibler divergences between the high-dimensinal points corresponding to the rows of hypergraphs adjacent matrix and the low-dimensional mapping points, which preserves the structure of high-dimensional space in low-dimensional space. Then, a hierarchical clustering algorithm is carried out in the low-dimensional space to obtain the final clustering result. Experimental results on several baseline datasets indicate that TSNE can improve the cluster results of hierarchical clustering algorithm and the proposed cluster ensemble method via TSNE outperforms state-of-the-art methods.
  • loading
  • JAIN A K, MURTY M N, and FLYNN P J. Data clustering: A review[J]. ACM Computing Surveys, 1999, 31(3): 264-323.
    JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
    汪晓锋, 刘功申, 李建华. 基于模糊聚类的多分辨率社区发现方法[J]. 电子与信息学报, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT161116.
    WANG Xiaofeng, LIU Gongshen, and LI Jianhua. Multiresolution community detection based on fuzzy clustering[J]. Journal of Electronics Information Technology, 2017, 39(9): 2033-2039. doi: 10.11999/JEIT 161116.
    STREHL A and GHOSH J. Cluster ensembles: A knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3: 583-617.
    ZHOU Zhihua and TANG Wei. Clusterer ensemble[J]. Knowledge-Based Systems, 2006, 19(1): 77-83.
    罗会兰, 孔繁胜, 李一啸. 聚类集成中的差异性度量研究[J]. 计算机学报, 2007, 30(8): 1315-1323.
    LUO Huilan, KONG Fansheng, and LI Yixiao. An analysis of diversity measures in clustering ensembles[J]. Chinese Journal of Computers, 2007, 30(8): 1315-1323.
    WU Junjie, LIU Hongfu, XIONG Hui, et al. K-means based consensus clustering: A unified view[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(1): 155-169. doi: 10.1109/TKDE.2014.2316512.
    FRED A and LOURENGO A. Cluster ensemble methods: From single clusterings to combined solutions[J]. Studies in Computational Intelligence, 2008, 126(1): 3-30.
    XU Sen, CHAN Kungsic, Gao Jun, et al. An integrated K-means?Laplacian cluster ensemble approach for document datasets[J]. Neurocomputing, 2016, 214(6): 495-507. doi: 10.1016/j.neucom.2016.06.034.
    YU Zhiwen, LI Le, LIU Jiming, et al. Adaptive noise immune cluster ensemble using affinity propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(12): 3176-3189. doi: 10.1109/TKDE.2015.2453162.
    褚睿鸿, 王红军, 杨燕, 等. 基于密度峰值的聚类集成[J]. 自动化学报, 2016, 42(9): 1401-1412. doi: 10.16383/j.aas.2016. c150864.
    CHU Ruihong, WANG Hongjun, YANG Yan, et al. Clustering ensemble based on density peaks[J]. Acta Automatica Sinica, 2016, 42(9): 1401-1412. doi: 10.16383/ j.aas.2016.c150864.
    BERIKOV V and PESTUNOV I. Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties[J]. Pattern Recognition, 2017, 63: 427-436. doi: 10.1016/j.patcog.2016.10.017.
    MAATEN L V D and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
    MAATEN L V D. Learning a parametric embedding by preserving local structure[C]. Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, Clearwater Beach, Florida, USA, 2009: 384-391.
    MAATEN L V D. Accelerating t-SNE using tree-based algorithms[J]. Journal of Machine Learning Research, 2014, 15(1): 3221-3245.
    SALTON G and BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing and Management, 1998, 24(5): 513-523.
    FERN X Z and LIN W. Cluster ensemble selection[J]. Statistical Analysis Data Mining, 2008, 1(3): 128-141.
    ZHAO Xingwang, LIANG Jiye, and DANG Chuangyin. Clustering ensemble selection for categorical data based on internal validity indices[J]. Pattern Recognition, 2017, 69(4): 150-168. doi: 10.1016/j.patcog.2017.04.019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1773) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return