Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
LI Wenjuan, Lü Jing, GU Hong, SU Weimin, MA Chao, YANG Jianchao. Improved Gaussian Inverse Wishart Probability Hypothesis Density for Extended Target Tracking[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1279-1286. doi: 10.11999/JEIT170883
Citation: LI Wenjuan, Lü Jing, GU Hong, SU Weimin, MA Chao, YANG Jianchao. Improved Gaussian Inverse Wishart Probability Hypothesis Density for Extended Target Tracking[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1279-1286. doi: 10.11999/JEIT170883

Improved Gaussian Inverse Wishart Probability Hypothesis Density for Extended Target Tracking

doi: 10.11999/JEIT170883
Funds:

The National Natural Science Foundation of China (61471198, 61671246), The Natural Science Foundation of Jiangsu Province (BK20160847, BK20170855)

  • Received Date: 2017-09-19
  • Rev Recd Date: 2018-03-16
  • Publish Date: 2018-06-19
  • Assumed that extension and measurement number of Extended Targets (ET) are respectively modeled as ellipse and Poisson, a Gaussian Inverse Wishart Probability Hypothesis Density (GIW-PHD) filter can estimate kinematic and extension states. However, for the number of spatially close targets and the extensions of non-ellipsoidal and occluded targets, the results estimated by this filter are not accurate enough. In view of these problems, an improved GIW-PHD filter is proposed in this paper. Firstly, assumed that target extension is modeled as a reference ellipse of the same size, a modified Random Matrix (RM) method is obtained by devising a new scatter matrix. Then, combining the improved RM method with the ET-PHD based on a measurement number multi-Bernoulli model, the improved GIW-PHD filter is obtained. Simulated and experimental results show that, compared with the traditional GIW-PHD, the improved GIW-PHD filter can obtain more accurate estimates in target number and the extensions of ellipsoidal and non-ellipsoidal targets with large measurement number and extensions.
  • loading
  • GILHOLM K and SALMOND D. Spatial distribution model for tracking extended objects[J]. IET Radar, Sonar Navigation, 2005, 152(5): 364-371. doi: 10.1049/ip-rsn: 20045114.
    MAHLER R. Statistical Multisource-Multitarget Information Fusion[M]. Norwood, MA: Artech House, 2007: 193-360.
    VO B and MA W. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104. doi: 10.1109/TSP.2006. 881190.
    GRANSTROM K, LUNDQUIST C, and ORGUNER U. Extended target tracking using a Gaussian mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286. doi: 10.1109/TAES.2012. 6324703.
    李文娟, 顾红, 苏卫民. 基于多伯努利概率假设密度的扩展目标跟踪方法[J]. 电子与信息学报, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT160372.
    LI Wenjuan, GU Hong, and SU Weimin. Extended target tracking method based on multi-Bernoulli probability hypothesis density[J]. Journal of Electronics Information Technology, 2016, 38(12): 3114-3121. doi: 10.11999/JEIT 160372.
    KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059. doi: 10.1109/TAES.2008.4655362.
    FELDMANN M, FRANKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409-1420. doi: 10.1109/TSP.2010.2101064.
    BEARD M, REUTER S, GRANSTROM K, et al. Multiple extended target tracking with labeled random finite sets[J]. IEEE Transactions on Signal Processing, 2016, 64(7): 1638-1653. doi: 10.1109/TSP.2015.2505683.
    LAN Jian and LI Xiaorong. Tracking of maneuvering non- ellipsoidal extended object or target group using random matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2450-2463. doi: 10.1109/TSP.2014.2309561.
    GRANSTROM K, WILLETT C, and BAR-SHALOM Y. An extended target tracking model with multiple random matrices and unified kinematics[C]. International Conference on Information Fusion, Washington, USA, 2015: 1007-1014.
    GRANSTROM K and ORGUNER U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671. doi: 10.1109/TSP.2012.2212888.
    LI Peng, GE Hongwei, YANG Jinlong, et al. Shape selection partitioning algorithm for Gaussian inverse Wishart probability hypothesis density filter for extended target tracking[J]. Radar, Sonar Navigation, 2016, 10(9): 1041-1051. doi: 10.1049/iet-spr.2015.0503.
    VIVONE G, BRACA P, GRANSTROM K, et al. Multistatic Bayesian extended target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2626-2643. doi: 10.1109/TAES.2016.150724.
    VIVONE G and BRACA P. Joint probabilistic data association tracker for extended target tracking applied to X-band Marine radar data[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 1007-1019. doi: 10.1109/JOE.2015. 2503499.
    GRANSTROM K, NATALE A, BRACA P, et al. PHD extended target tracking using an incoherent X-band radar: preliminary real-world experimental results[C]. International Conference on Information Fusion, Salamanca, Spain, 2014: 1-8.
    GRANSTROM K, NATALE A, BRACA P, et al. Gamma Gaussian inverse Wishart probability hypothesis density for extended target tracking using X-band marine radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6617-6631. doi: 10.1109/TGRS.2015.2444794.
    GALATI G, LEONARDI M, CAVALLIN A, et al. Airport surveillance processing chain for high resolution radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1522-1533. doi: 10.1109/TAES.2010.5545207.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1780) PDF downloads(261) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return