Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
QI Xiaohui, HUANG Kaizhi, ZHONG Zhihao, JIN Liang, JI Xinsheng. Secrecy Performance Analysis of Cooperative Transmission for Multi-floor Building Indoor Wireless Networks[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1461-1467. doi: 10.11999/JEIT170874
Citation: QI Xiaohui, HUANG Kaizhi, ZHONG Zhihao, JIN Liang, JI Xinsheng. Secrecy Performance Analysis of Cooperative Transmission for Multi-floor Building Indoor Wireless Networks[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1461-1467. doi: 10.11999/JEIT170874

Secrecy Performance Analysis of Cooperative Transmission for Multi-floor Building Indoor Wireless Networks

doi: 10.11999/JEIT170874
Funds:

The National Natural Science Foundation of China (61379006, 61471396, 61601514, 61501516, 61521003)

  • Received Date: 2017-09-14
  • Rev Recd Date: 2018-01-16
  • Publish Date: 2018-06-19
  • The particularity of security threats for Multi-floor building Indoor Wireless Networks (MIWNs) is mainly caused by its stochastic, dynamic and complex spatial topology. According to the features of MIWNs, such as the randomization of node distribution, complexity of spatial structure, and diversification of loss types, physical layer security technologies and stochastic geometry theory are utilized to study the cooperative secrecy transmission in MIWNs. First, a fundamental system model for MIWNs is proposed based on multi-floor Poisson point process. On this basis, cooperative transmission is introduced into MIWNs and an analysis framework to evaluate the secrecy probability for cooperative transmissions in MIWNs is proposed. Then, based on the theoretical analyses and simulation results, the influences of total floor number, secrecy rate threshold, floor number for target user, and the transmit power allocation on secrecy performance in MIWNs are examined. Finally, the simulations verify that the cooperative transmission can effectively improve the secrecy performance of the MIWNs.
  • loading
  • CHANDRASEKHAR V, ANDREWS J G, and GATHERER A. Femtocell networks: A survey[J]. IEEE Communications Magazine, 2008, 46(9): 59-67. doi: 10.1109/MCOM2008. 4623708.
    WANG Y, MIAO Z, and JIAO L. Safeguarding the Ultra-dense networks with the aid of physical layer security: A review and a case study[J]. IEEE Access, 2017, 4: 9082-9092. doi: 10.1109/ACCESS.2016.2635698.
    YAN S, PENG M, CHEN W, et al. Downlink heterogeneous small cell networks with cell associations in k-floor indoor scenarios[C]. IEEE International Conference on Communication Workshop (ICCW), London, UK, 2015: 151-154.
    WYNER A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355-1387. doi: 10.1002/ j.1538-7305.1975.tb02040.x.
    LIU Y, QIN Z, ELKASHLAN M, et al. Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1656-1672. doi: 10.1109/TWC. 2017.2650987.
    OUYANG N, JIANG X Q, BAI E, et al. Destination assisted jamming and beamforming for improving the security of AF relay systems[J]. IEEE Access, 2017, 5: 4125-4131. doi: 10.1109/ACCESS.2017.2682838.
    LI B, FEI Z, and CHEN H. Robust artificial noise-aided secure beamforming in wireless-powered non-regenerative relay networks[J]. IEEE Access, 2016, 4: 7921-7929. doi: 10.1109/ACCESS.2016.2627002.
    GUO H, YANG Z, ZHANG L, et al. Power-constrained secrecy rate maximization for joint relay and jammer selection assisted wireless networks[J]. IEEE Transactions on Communications, 2017, 65(5): 2180-2193. doi: 10.1109/ TCOMM.2017.2651066.
    XU M, TAO X, YANG F, et al. Enhancing secured coverage with CoMP transmission in heterogeneous cellular networks [J]. IEEE Communications Letters, 2016, 20(11): 2272-2275. doi: 10.1109/LCOMM.2016.2598536.
    WANG W, TEH K C, and LI K H. Artificial noise aided physical layer security in multi-antenna small-cell networks[J]. IEEE Transactions on Information Forensics Security, 2017, 12(6): 1470-1482. doi: 10.1109/TIFS.2017.2663336.
    WANG H M, ZHENG T X, YUAN J, et al. Physical layer security in heterogeneous cellular networks[J]. IEEE Transactions on Communications, 2016, 64(3): 1204-1219. doi: 10.1109/TCOMM.2016.2519402.
    LI N, TAO X, WU H, et al. Large-system analysis of artificial-noise-assisted communication in the multiuser downlink: Ergodic secrecy sum rate and optimal power allocation[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7036-7050. doi: 10.1109/TVT.2015.2493178.
    PAN Z and ZHU Q. Modeling and analysis of coverage in 3-D cellular networks[J]. IEEE Communications Letters, 2015, 19(5): 831-834. doi: 10.1109/LCOMM.2015.2411599.
    LEE J, ZHANG X, and BACCELLI F. A 3-D spatial model for in-building wireless networks with correlated shadowing [J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7778-7793. doi: 10.1109/TWC.2016.2607206.
    ZHANG Y, XU W, and LI X. Multi-floor PPP model for performance analysis of indoor wireless networks[C]. IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC), Shenzhen, China, 2016: 371-376.
    OMRI A and HASNA M O. Modelling and performance analysis of 3-D heterogeneous networks with interference management[J]. IEEE Communications Letters, 2017, 21(8): 1787-1790. doi: 10.1109/LCOMM.2017.2695609.
    SEIDEL S Y and RAPPAPORT T S. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings[J]. IEEE Transactions on Antennas Propagation, 1992, 40(2): 207-217. doi: 10.1109/8.127405.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1231) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return