Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
ZHANG Bingtao, WANG Xiaopeng, WANG Lücheng, ZHANG Zhonglin, LI Yanlin, LIU Hu. Intrusion Detection Method for MANET Based on Graph Theory[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1446-1452. doi: 10.11999/JEIT170756
Citation: ZHANG Bingtao, WANG Xiaopeng, WANG Lücheng, ZHANG Zhonglin, LI Yanlin, LIU Hu. Intrusion Detection Method for MANET Based on Graph Theory[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1446-1452. doi: 10.11999/JEIT170756

Intrusion Detection Method for MANET Based on Graph Theory

doi: 10.11999/JEIT170756
Funds:

The National Natural Science Foundation of China (61761027, 61261029, 61662043), The Yong Scholar Fund of Lanzhou Jiaotong University (2016004)

  • Received Date: 2017-07-25
  • Rev Recd Date: 2018-02-28
  • Publish Date: 2018-06-19
  • Mobile Ad hoc NETwork (MANET) is vulnerable to various security threats, and intrusion detection is an effective guarantee for its safe operation. However, existing methods mainly focus on feature selection and feature weighting, and ignore the potential association among features. To solve this problem, an intrusion detection method for MANET based on graph theory is proposed. First of all, nine features are selected as nodes based on the analysis of typical attack behavior, and the edges among nodes are determined according to Euclidean distance so as to build the structure diagram. Secondly, the scale attributes of neighborhood nodes and the degree of closeness attributes among nodes are considered to explore (i.e. feature) the correlation among nodes, then the statistical properties degree distribution and clustering coefficient of graph theory are used to realize the above two attributes. Finally, contrasting experimental results show that compared with the traditional methods, the average detection rate and false detection rate of new method are improved by 10.15% and reduced by 1.8% respectively.
  • loading
  • 冯涛, 郭显, 马建峰, 等. 可证明安全的节点不相交多路径源路由协议[J]. 软件学报, 2010, 21(7): 1717-1731. doi: 10.3724/ SP.J.1001.2010.03576.
    FENG Tao, GUO Xian, MA Jianfeng, et al. Provably secure approach for multiple node-disjoint paths source routing protocol[J]. Journal of Software, 2010, 21(7): 1717-1731. doi: 10.3724/SP.J.1001.2010.03576.
    VADIVEL R and BHASKARAN V M. Adaptive reliable and congestion control routing protocol for MANET[J]. Wireless Networks, 2016, 23(3): 819-829. doi: 10.1007/s11276-015- 1137-3.
    SINGAL G, LAXMI V, GAUR M S, et al. Multi-constraints link stable multicast routing protocol in MANETs[J]. Ad Hoc Networks, 2017, 63: 115-128. doi: 10.1016/j.adhoc.2017.05. 007.
    INDIRANI G and SELVAKUMAR K. A swarm-based efficient distributed intrusion detection system for mobile Ad hoc networks (MANET)[J]. International Journal of Parallel, Emergent and Distributed Systems, 2014, 29(1): 90-103. doi: 10.1080/17445760. 2013.773001.
    SINDHU S S S, GEETHA S, and KANNAN A. Decision tree based light weight intrusion detection using a wrapper approach[J]. Expert Systems with Applications, 2012, 39(1): 129-141. doi: 10.1016/j.eswa.2011.06.013.
    FIDALCASTRO A and BABURAJ E. Sequential pattern mining for intrusion detection system with feature selection for MANETS[J]. Asian Journal of Research in Social Sciences and Humanities, 2017, 7(2): 428-442. doi: 10.5958/2249-7315. 2017.00100.9.
    李洪成, 吴晓平, 严博. 面向MANET异常检测的分布式遗传k-means研究[J].通信学报, 2015, 36(11): 167-173. doi: 10.11959/j.issn.1000-436x.2015269.
    LI Hongcheng, WU Xiaoping, and YAN Bo. Research on distributed genetic k-means for anomaly detection in MANET[J]. Journal on Communications, 2015, 36(11): 167-173. doi: 10.11959/j.issn.1000-436x.2015269.
    CHUNG Y Y and WAHID N. A hybrid network intrusion detection system using simplified swarm optimization (SSO)[J]. Applied Soft Computing, 2012, 12(9): 3014-3022. doi: 10.1016/j.asoc.2012.04.020.
    LI Xiaojin, HU Xintao, JIN Changfeng, et al. A comparative study of theoretical graph models for characterizing structural networks of human brain[J]. International Journal of Biomedical Imaging, 2013, 13(1): 27-35. doi: 10.1155/2013/201735.
    ZHU Guohun, LI Yan, and WEN P P. Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal[J]. IEEE Journal of Biomedical Health Informatics, 2014, 18(6): 1813-1821. doi: 10.1109/JBHI.2014.2303991.
    ZHANG Xiaowei, HU Bin, MA Xu, et al. Ontology driven decision support for the diagnosis of mild cognitive impairment[J]. Computer Methods and Programs in Biomedicine, 2014, 113(3): 781-791. doi: 10.1016/j.cmpb. 2013.12.023.
    包振, 何迪. 一种基于图论的入侵检测方法[J]. 上海交通大学学报, 2010, 44(9): 1176-1180.
    BAO Zhen and HE Di. An intrusion detection method based on graph theory[J]. Journal of Shanghai Jiaotong University, 2010, 44(9): 1176-1180.
    MITROKOTSA A and DIMITRAKAKIS C. Intrusion detection in MANET using classification algorithms: The effects of cost and model selection[J]. Ad Hoc Networks, 2013, 11(1): 226-237. doi: 10.1016/j.adhoc.2012.05.006.
    严蔚敏, 陈文博. 数据结构及应用算法教程(修订版)[M]. 北京: 清华大学出版社, 2011: 201-202.
    YAN Weimin and CHEN Wenbo. Data Structure and Application Algorithm Tutorial(Revised Edition)[M]. Beijing: Tsinghua University Press, 2011: 201-202.
    TAKIGUCHI J, LWAMA K, KOZAKI M, et al. A study of autonomous mobile system in outdoor environment[J]. IFAC Computer Aided Control Systems, 1997, 30(4): 61-66. doi: 10.1016/S1474-6670(17)43613-5.
    王林, 戴冠中. 复杂网络的度分布研究[J]. 西北工业大学学报, 2006, 24(4): 405-409.
    WANG Lin and DAI Guanzhong. On degree distribution of complex network[J]. Journal of Northwestern Polytechnical University, 2006, 24(4): 405-409.
    任卓明, 邵凤, 刘建国, 等. 基于度与集聚系数的网络节点重要性度量方法研究[J]. 物理学报, 2013, 62(12): 522-526. doi: 10.7498/aps.62.128901.
    REN Zhuoming, SHAO Feng, LIU Jianguo, et al. Node importance measurement based on the degree and clustering coefficient information[J]. Acta Physica Sinica, 2013, 62(12): 522-526. doi: 10.7498/aps.62.128901.
    ZHANG Xiaowei, HU Bin, MA Xu, et al. Resting-State whole-brain functional connectivity networks for MCI classification using L2-Regularized logistic regression[J]. IEEE Transactions on Nanobioscience, 2015, 14(2): 237-247. doi: 10.1109/TNB.2015.2403274.
    李玲娟, 徐向凯, 王汝传. MANET的IDS中移动代理部署算法的研究[J]. 南京邮电大学学报(自然科学版), 2006, 26(3): 52-57.
    LI Lingjuan, XU Xiangkai, and WANG Ruchuan. Research of the mobile agent disposal algorithm in MANET IDS[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2006, 26(3): 52-57.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1683) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return