Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
LIU Qinrang, LIU Chongyang. Calculation Optimization for Convolutional Neural Networks and FPGA-based Accelerator Design Using the Parameters Sparsity[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1368-1374. doi: 10.11999/JEIT170819
Citation: LIU Qinrang, LIU Chongyang. Calculation Optimization for Convolutional Neural Networks and FPGA-based Accelerator Design Using the Parameters Sparsity[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1368-1374. doi: 10.11999/JEIT170819

Calculation Optimization for Convolutional Neural Networks and FPGA-based Accelerator Design Using the Parameters Sparsity

doi: 10.11999/JEIT170819
Funds:

The National Science and Technology Major Project of the Ministry of Science and Technology of China (2016ZX01012101), The National Natural Science Foundation of China (61572520, 61521003)

  • Received Date: 2017-08-21
  • Rev Recd Date: 2018-01-05
  • Publish Date: 2018-06-19
  • Concerning the problem of real-time restriction on the application of Convolution Neural Network (CNN) in embedded field, and the large degree of sparsity in CNN convolution calculations, this paper proposes an implement method of CNN accelerator based on FPGA to improve computation speed. Firstly, the sparseness characteristics of CNN convolution calculation are seeked out. Secondly, in order to use the parameters sparseness, CNN convolution calculations are converted to matrix multiplication. Finally, the implementation method of parallel matrix multiplier based on FPGA is proposed. Simulation results on the Virtex-7 VC707 FPGA show that the design shortens the calculation time by 19% compared to the traditional CNN accelerator. The method of simplifying the CNN calculation process by sparseness not only can be implemented on FPGA, but also can migrate to other embedded ends.
  • loading
  • 曾毅, 刘成林, 谭铁牛. 类脑智能研究的回顾与展望[J]. 计算机学报, 2016, 39(1): 212-222. doi: 10.11897/SP.J.1016.2016. 00212.
    ZENG Yi, LIU Chenglin, and TAN Tieniu. Retrospect and outlook of brain-inspired intelligence research[J]. Chinese Journal of Computers, 2016, 39(1): 212-222. doi: 10.11897/ SP.J.1016.2016.00212.
    常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42(9): 1300-1312. doi: 10.16383/j.aas. 2016.c150800.
    CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolutional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312. doi: 10.16383/j.aas.2016.c150800.
    JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2012, 35(1): 221-231. doi: 10.1109/TPAMI.2012.59.
    CHAKRADHAR S, SANKARADAS M, JAKKULA V, et al. A dynamically configurable coprocessor for convolutional neural networks[J]. ACM Sigarch Computer Architecture News, 2010, 38(3): 247-257. doi: 10.1145/1816038.1815993.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2012: 1097-1105. doi: 10.1145/3065386.
    SUDA N, CHANDRA V, DASIKA G, et al. Throughput- optimized openCL-based FPGA accelerator for large-scale convolutional neural networks[C]. ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, California, USA, 2016: 16-25. doi: 10.1145/2847263.2847276.
    QIU J, WANG J, YAO S, et al. Going deeper with embedded FPGA platform for convolutional neural network[C]. ACM/ SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, California, USA, 2016: 26-35. doi: 10.1145 /2847263.2847265.
    ANWAR S, HWANG K, and SUNG W. Fixed point optimization of deep convolutional neural networks for object recognition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, QLD, Australia, 2015: 1131-1135. doi: 10.1109/ICASSP.2015.7178146.
    ZHANG C, LI P, SUN G, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]. ACM/SIGDA International Symposium on Field- Programmable Gate Arrays, Monterey, California, USA, 2015: 161-170. doi: 10.1145/2684746.2689060.
    SHEN Y, FERDMAN M, and MILDER P. Maximizing CNN accelerator effciency through resource partitioning[C]. Annual International Symposium on Computer Architecture, Toronto, ON, Canada, 2017: 535-547. doi: 10.1145/3140659. 3080221.
    DU Z, FASTHUBER R, CHEN T, et al. ShiDianNao: Shifting vision processing closer to the sensor[C]. Annual International Symposium on Computer Architecture, Portland, Oregon, 2015: 92-104. doi: 10.1145/2749469. 2750389.
    CHEN T, DU Z, SUN N, et al. DianNao: A small-footprint high-throughput accelerator for ubiquitous machine- learning[C]. International Conference on Architectural Support for Programming Languages and Operating Systems, Salt Lake City, Utah, USA, 2014: 269-284. doi: 10.1145/ 2541940.2541967.
    HADJIS S, ABUZAID F, ZHANG C, et al. Caffe con troll: Shallow ideas to speed up deep learning[C]. Proceedings of the Fourth Workshop on Data analytics, Melbourne, VIC, Australia, 2015: 1-4. doi: 10.1145/2799562.2799641.
    YAVITS L, MORAD A, and GINOSAR R. Sparse matrix multiplication on an associative processor[J]. IEEE Transactions on Parallel Distributed Systems, 2015, 26(11): 3175-3183. doi: 10.1109/TPDS.2014.2370055.
    CHELLAPILLA K, PURI S, and SIMARD P. High performance convolutional neural networks for document processing[C]. Tenth International Workshop on Frontiers in Handwriting Recognition, La Baule, France, 2006: 1-6.
    CHETLUR S, WOOLLEY C, VANDERMERSCH P, et al. CuDNN: Efficient primitives for deep learning[C]. International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 1-9.
    田翔, 周凡, 陈耀武, 等. 基于FPGA的实时双精度浮点矩阵乘法器设计[J]. 浙江大学学报(工学版), 2008, 42(9): 1611-1615. doi: 10.3785/j.issn.1008-973X.2008.09.027.
    TIAN Xiang, ZHOU Fan, CHEN Yaowu, et al. Design of field programmable gate array based real-time double-precision floating-point matrix multiplier[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(9): 1611-1615. doi: 10.3785/j.issn.1008-973X.2008.09.027.
    JANG J, CHOI S B, and PRASANNA V K. Energy- and time-efficient matrix multiplication on FPGAs[J]. IEEE Transactions on Very Large Scale Integration Systems, 2005, 13(11): 1305-1319. doi: 10.1109/TVLSI.2005.859562.
    KUMAR V B Y, JOSHI S, PATKAR S B, et al. FPGA based high performance double-precision matrix multiplication[J]. International Journal of Parallel Programming, 2010, 38(3/4): 322-338. doi: 10.1109/VLSI.Design.2009.13.
    DONAHUE J, JIA Y, VINYALS O, et al. DeCAF: A deep convolutional activation feature for generic visual recognition[C]. International Conference on Machine Learning, Beijing, China, 2014: 647-655.
    PETE Warden. Why GEMM is at the heart of deep learning[OL]. https://petewarden.com/2015/04/20/ why-gemm-is-at-the-heart-of-deep-learning/.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2463) PDF downloads(451) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return