Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
HU Min, TENG Wendi, WANG Xiaohua, XU Liangfeng, YANG Juan. Facial Expression Recognition Based on Local Texture and Shape Features[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1338-1344. doi: 10.11999/JEIT170799
Citation: HU Min, TENG Wendi, WANG Xiaohua, XU Liangfeng, YANG Juan. Facial Expression Recognition Based on Local Texture and Shape Features[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1338-1344. doi: 10.11999/JEIT170799

Facial Expression Recognition Based on Local Texture and Shape Features

doi: 10.11999/JEIT170799
Funds:

The National Natural Science Foundation of China (61672202, 61432004, 61502141), The National Natural Science Foundation of China-Shenzhen Joint Foundation (Key Project) (U1613217), The Key University Science Research Project of Anhui Province (KJ2017A368)

  • Received Date: 2017-08-07
  • Rev Recd Date: 2017-12-28
  • Publish Date: 2018-06-19
  • In order to improve the inadequacies of Local Binary Pattern (LBP), Center-Symmetric Local Binary Pattern (CS-LBP) and Histogram of Oriented Gradient (HOG) algorithm, Center-Symmetric Local Smooth Binary Pattern (CS-LSBP) and Histogram of Oriented Absolute Gradient (HOAG) are proposed, and a facial expression recognition method based on local texture and local shape features is proposed in this paper. Firstly, CS-LSBP and HOAG are used to extract two local features of expression image of the face. Then, Canonical Correlation Analysis (CCA) is used to fuse two local features. Finally, Support Vector Machine (SVM) is performed for the expression classification. Experimental results on JAFFE and Cohn-Kanade (CK) facial expression databases show that, the improved feature extraction method can extract the detail information of the image more completely and accurately. And the fusion method based on CCA can give full play to the representation ability of each feature. The facial expression recognition method proposed in this paper obtains a better recognition effect.
  • loading
  • 付晓峰, 韦巍. 基于多尺度中心化二值模式的人脸表情识别[J]. 控制理论与应用, 2009, 26(6): 629-633.
    KYPEROUNTAS M, TEFAS A, and PITAS I. Salient feature and reliable classifier selection for facial expression classification[J]. Pattern Recognition, 2010, 43(3): 972-986. doi: 10.1016/j.patcog.2009.07.007.
    FU Xiaofeng and WEI Wei. Facial expression recognition based on multi-scale centralized binary pattern[J]. Control Theory Applications, 2009, 26(6): 629-633.
    UAR A, DEMIR Y, and GZELI C. A new facial expression recognition based on curvelet transform and online sequential extreme learning machine initialized with spherical clustering[J]. Neural Computing and Applications, 2016, 27(1): 131-142. doi: 10.1007/s00521-014-1569-1.
    TAN H C, ZHANG Y J, HAO C, et al. Person-independent expression recognition based on person-similarity weighted expression feature[J]. Journal of Systems Engineering and Electronics, 2010, 21(1): 118-126. doi: 10.3969/j.issn.1004- 4132.2010.01.019.
    ZHANG S, ZHAO X, and LEI B. Facial expression recognition based on local binary patterns and local fisher discriminant analysis[J]. WSEAS Transactions on Signal Processing, 2012, 8(1): 21-31.
    WANG Z, RUAN Q, and AN G. Facial expression recognition using sparse local Fisher discriminant analysis[J]. Neurocomputing, 2016, 174(174): 756-766. doi: 10.1016/ j.neucom.2015.09.083.
    ZHAO X and ZHANG S. Facial expression recognition based on local binary patterns and kernel discriminant isomap[J]. Sensors, 2011, 11(10): 9573-9588. doi: 10.3390/s111009573.
    CHEN J, TAKIGUCHI T, and ARIKI Y. Rotation-reversal invariant HOG cascade for facial expression recognition[J]. Signal Image Video Processing, 2017(1-3): 1-8. doi: 10.1007 /s11760-017-1111-x.
    HEGDE G, SEETHA M, and HEGDE N. Facial expression recognition using entire gabor filter matching score level fusion approach based on subspace methods[J]. Microelectronics Reliability, 2015, 52(3): 497-502. doi: 10.1007/978-3-319-26832-3_6.
    ZHOU H, LAM K M, and HE X. Shape-appearance- correlated active appearance model[J]. Pattern Recognition, 2016, 56(C): 88-99. doi: 10.1016/j.patcog.2016.03.002.
    OJALA T, PIETIKINEN M, and HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern recognition, 1996, 29(1): 51-59. doi: 10.1016/0031-3203(95)00067-4.
    HEIKKIL M, PIETIKINEN M, and SCHMID C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42(3): 425-436. doi: 10.1016/ j.patcog.2008.08.014.
    王晓华, 李瑞静, 胡敏, 等. 融合局部特征的面部遮挡表情识别[J]. 中国图象图形学报, 2016, 21(11): 1473-1482. doi: 10.11834/jig.20161107.
    WANG Xiaohua, LI Ruijing, HU Min, et al. Occluded facial expression recognition based on the fusion of local features[J]. Journal of Image and Graphics, 2016, 21(11): 1473-1482. doi: 10.11834/jig.20161107.
    杨利平, 辜小花. 用于人脸识别的相对梯度直方图特征描述[J]. 光学精密工程, 2014, 22(1): 152-159. doi: 10.3788/OPE. 20142201.0152.
    YANG Liping and GU Xiaohua. Relative gradient histogram features for face recognition[J]. Optics and Precision Engineering, 2014, 22(1): 152-159. doi: 10.3788/OPE. 20142201.0152.
    刘帅师, 田彦涛, 万川. 基于Gabor多方向特征融合与分块直方图的人脸表情识别方法[J]. 自动化学报, 2011, 37(12): 1455-1463. doi: 10.3724/SP.J.1004.2011.01455.
    LIU Shuishi, TIAN Yantao, and WAN Chuan. Facial expression recognition method based on gabor multi- orientation features fusion and block histogram[J]. Acta Automatica Sinica, 2011, 37(12): 1455-1463. doi: 10.3724 /SP.J.1004.2011.01455.
    TURAN C and LAM K M. Region-based feature fusion for facial-expression recognition[C]. IEEE International Conference on Image Processing, Paris, 2014: 5966-5970. doi: 10.1109/ICIP.2014.7026204.
    易积政, 毛峡, ISHIZUKA M, 等. 基于特征点矢量与纹理形变能量参数融合的人脸表情识别[J]. 电子与信息学报, 2013, 35(10): 2403-2410. doi: 10.3724/SP.J.1146.2012.01569.
    YI Jizheng, MAO Xia, ISHIZUKA M, et al. Facial expression recognition based on feature point vector and texture deformation energy parameters[J]. Journal of Electronics Information Technology, 2013, 35(10): 2403-2410. doi: 10.3724/SP.J.1146.2012.01569.
    胡敏, 江河, 王晓华, 等. 基于几何和纹理特征的表情层级分类方法[J]. 电子学报, 2017, 45(1): 164-172. doi: 10.3969/ j.issn.0372-2112.2017.01.023.
    HU Min, JIANG He, WANG Xiaohua, et al. A hierarchical classification method of expressions based on geometric and texture features[J]. Acta Electronica Sinica, 2017, 45(1): 164-172. doi: 10.3969/j.issn.0372-2112.2017.01.023.
    孙权森, 曾生根, 王平安, 等. 典型相关分析的理论及其在特征融合中的应用[J]. 计算机学报, 2005, 28(9): 1524-1533. doi: 10.3321/j.issn:0254-4164.2005.09.015.
    SUN Quansen, ZENG Shenggen, WANG Pingan, et al. The theory of canonical correlation analysis and its application to feature fusion[J]. Chinese Journal of Computers, 2005, 28(9): 1524-1533. doi: 10.3321/j.issn:0254-4164.2005.09.015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1600) PDF downloads(313) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return