Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
WANG Hongyan, FANG Yunfei, PEI Bingnan. Matrix Completion Based Second Order Statistic Reconstruction DOA Estimation Method[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1383-1389. doi: 10.11999/JEIT170826
Citation: WANG Hongyan, FANG Yunfei, PEI Bingnan. Matrix Completion Based Second Order Statistic Reconstruction DOA Estimation Method[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1383-1389. doi: 10.11999/JEIT170826

Matrix Completion Based Second Order Statistic Reconstruction DOA Estimation Method

doi: 10.11999/JEIT170826
Funds:

The National Natural Science Foundation of China (61301258, 61271379), China Postdoctoral Science Foundation (2016M590218)

  • Received Date: 2017-08-23
  • Rev Recd Date: 2018-01-08
  • Publish Date: 2018-06-19
  • Focusing on the problem of poor accuracy and low resolution of traditional Direction Of Arrival (DOA) estimation algorithm in the presence of non-uniform noise, based on the Matrix Complement theory, a Weighted L1 Sparse Reconstruction DOA estimation algorithm is developed under the Second-order Statistical domain (MC-WLOSRSS) in this paper. Following the matrix completion approach, the regularization factor is firstly introduced to reconstruct the signal covariance matrix reconstruction as a noise-free covariance matrix. After that, the multi-vector problem of the noise-free covariance matrix can be transformed into a single vector one by exploiting sum-average operation for matrix in the second-order statistical domain. Finally, the DOA can be complemented by employing the sparse reconstruction weighted L1 norm. Numerical simulations show that the proposed algorithm outperforms the traditional DOA algorithms such as MUltiple SIgnal Classification (MUSIC), Improved L1-SRACV (IL1-SRACV), L1-norm-Singular Value Decomposition (L1-SVD) subspace and sparse reconstruction weighted L1 methods in the following respects: suppressing the influence of the non-uniform noise significantly, bettering DOA estimation performance, as well as improving estimation accuracy and resolution with low Signal-Noise Ratio (SNR).
  • loading
  • SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830.
    VAN TREES H L. Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory[M]. New York, NY, USA: John Wiley Sons, 2002: 917-1317.
    LIAO B, HUANG L, GUO C, et al. New approaches to direction-of-arrival estimation with sensor arrays in unknown nonuniform noise[J]. IEEE Sensors Journal, 2016, 16(24): 8982-8989. doi: 10.1109/JSEN.2016.2621057.
    TIAN Y, SHI H, and XU H. DOA estimation in the presence of unknown nonuniform noise with coprime array[J]. Electronics Letters, 2016, 53(2): 113-115. doi: 10.1049/ el.2016.3944.
    HU R, FU Y, CHEN Z, et al. Robust DOA estimation via sparse signal reconstruction with impulsive noise[J]. IEEE Communications Letters, 2017, 21(6): 1333-1336. doi: 10.1109/LCOMM.2017.2675407.
    MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. doi: 10.1109/TSP.2005.850882.
    PAL P and VAIDYANATHAN P P. A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising[J]. IEEE Signal Processing Letters, 2014, 21(6): 737-741. doi: 10.1109/LSP.2014.2314175.
    PESAVENTO M and GERSHMAN A B. Maximum- likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2002, 49(7): 1310-1324. doi: 10.1109/78.928686.
    HE Z Q, SHI Z P, and HUANG L. Covariance sparsity-aware DOA estimation for nonuniform noise[J]. Digital Signal Processing, 2014, 28(1): 75-81. doi: 10.1016/j.dsp.2014.02. 013.
    YIN J H and CHEN T Q. Direction-of-arrival estimation using a sparse representation of array covariance vectors[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4493. doi: 10.1109/TSP.2011.2158425.
    LIAO B, GUO C, HUANG L, et al. Matrix completion based direction-of-arrival estimation in nonuniform noise[C]. IEEE International Conference on Digital Signal Processing, Beijing, China, 2017: 66-69. doi: 10.1109/ICDSP.2016. 7868517.
    CANDES E J and RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717-772. doi: 10.1007/s10208-009- 9045-5.
    CANDES E J and PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2009, 98(6): 925-936. doi: 10.1109 /JPROC.2009.2035722.
    JIANG X, ZHONG Z, LIU X, et al. Robust matrix completion via alternating projection[J]. IEEE Signal Processing Letters, 2017, 24(5): 579-583. doi: 10.1109/LSP. 2017.2685518.
    CANDES E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted L1 minimization[J]. Journal of Fourier Analysis Applications, 2008, 14(5): 877-905. doi: 10.1007/ s00041-008-9045-x.
    方庆园, 韩勇, 金铭, 等. 基于噪声子空间特征值重构的DOA估计算法[J]. 电子与信息学报, 2014, 36(12): 2876-2881. doi: 10.3724/SP.J.1146.2013.02014.
    FANG Qingyuan, HAN Yong, JIN Ming, et al. DOA estimation based on eigenvalue reconstruction of noise subspace[J]. Journal of Electronics Information Technology, 2014, 36(12): 2876-2881. doi: 10.3724/SP.J.1146.2013.02014.
    SUN S and PETROPULU A P. Waveform design for MIMO radars with matrix completion[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1400-1414. doi: 10.1109/JSTSP.2015.2469641.
    CAI J F, CANDES E J, and SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970.
    HOR R A and JOHNSON C R. Matrix Analysis[M]. Cambridge, U.K: Cambridge University Press, 1985: 1-162.
    冯明月, 何明浩, 徐璟, 等. 低信噪比条件下宽带欠定信号高精度DOA估计[J]. 电子与信息学报, 2017, 39(6): 1340-1347. doi: 10.11999/JEIT160921.
    FENG Mingyue, HE Minghao, XU Jing, et al. High accuracy DOA estimation under low SNR condition for wideband underdetermined signals[J]. Journal of Electronics Information Technology, 2017, 39(6): 1340-1347. doi: 10.11999/JEIT160921.
    OTTERSTEN B, STOICA P, and ROY R. Covariance matching estimation techniques for array signal processing applications[J]. Digital Signal Processing, 1998, 8(3): 185-210. doi: 10.1006/dspr.1998.0316.
    TIAN Y, SUN X, and ZHAO S. DOA and power estimation using a sparse representation of second-order statistics vector and l0-norm approximation[J]. Signal Processing, 2014, 105(12): 98-108. doi: 10.1016/j.sigpro.2014.05.014.
    LOBO M, VANDENBERGHE L, BOYD S, et al. Application of second-order cone programming[J]. Linear Algebra and its Applications, 1998, 284(1/3): 193-228. doi: 10.1016/S0024- 3795(98)10032-0.
    LIAO B, CHAN S C, HUANG L, et al. Iterative methods for subspace and DOA estimation in nonuniform noise[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3008-3020. doi: 10.1109/TSP.2016.2537265.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1330) PDF downloads(214) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return