Citation: | WANG Hongyan, FANG Yunfei, PEI Bingnan. Matrix Completion Based Second Order Statistic Reconstruction DOA Estimation Method[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1383-1389. doi: 10.11999/JEIT170826 |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986. 1143830.
|
VAN TREES H L. Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory[M]. New York, NY, USA: John Wiley Sons, 2002: 917-1317.
|
LIAO B, HUANG L, GUO C, et al. New approaches to direction-of-arrival estimation with sensor arrays in unknown nonuniform noise[J]. IEEE Sensors Journal, 2016, 16(24): 8982-8989. doi: 10.1109/JSEN.2016.2621057.
|
TIAN Y, SHI H, and XU H. DOA estimation in the presence of unknown nonuniform noise with coprime array[J]. Electronics Letters, 2016, 53(2): 113-115. doi: 10.1049/ el.2016.3944.
|
HU R, FU Y, CHEN Z, et al. Robust DOA estimation via sparse signal reconstruction with impulsive noise[J]. IEEE Communications Letters, 2017, 21(6): 1333-1336. doi: 10.1109/LCOMM.2017.2675407.
|
MALIOUTOV D, CETIN M, and WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. doi: 10.1109/TSP.2005.850882.
|
PAL P and VAIDYANATHAN P P. A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising[J]. IEEE Signal Processing Letters, 2014, 21(6): 737-741. doi: 10.1109/LSP.2014.2314175.
|
PESAVENTO M and GERSHMAN A B. Maximum- likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. IEEE Transactions on Signal Processing, 2002, 49(7): 1310-1324. doi: 10.1109/78.928686.
|
HE Z Q, SHI Z P, and HUANG L. Covariance sparsity-aware DOA estimation for nonuniform noise[J]. Digital Signal Processing, 2014, 28(1): 75-81. doi: 10.1016/j.dsp.2014.02. 013.
|
YIN J H and CHEN T Q. Direction-of-arrival estimation using a sparse representation of array covariance vectors[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4493. doi: 10.1109/TSP.2011.2158425.
|
LIAO B, GUO C, HUANG L, et al. Matrix completion based direction-of-arrival estimation in nonuniform noise[C]. IEEE International Conference on Digital Signal Processing, Beijing, China, 2017: 66-69. doi: 10.1109/ICDSP.2016. 7868517.
|
CANDES E J and RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717-772. doi: 10.1007/s10208-009- 9045-5.
|
CANDES E J and PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2009, 98(6): 925-936. doi: 10.1109 /JPROC.2009.2035722.
|
JIANG X, ZHONG Z, LIU X, et al. Robust matrix completion via alternating projection[J]. IEEE Signal Processing Letters, 2017, 24(5): 579-583. doi: 10.1109/LSP. 2017.2685518.
|
CANDES E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted L1 minimization[J]. Journal of Fourier Analysis Applications, 2008, 14(5): 877-905. doi: 10.1007/ s00041-008-9045-x.
|
方庆园, 韩勇, 金铭, 等. 基于噪声子空间特征值重构的DOA估计算法[J]. 电子与信息学报, 2014, 36(12): 2876-2881. doi: 10.3724/SP.J.1146.2013.02014.
|
FANG Qingyuan, HAN Yong, JIN Ming, et al. DOA estimation based on eigenvalue reconstruction of noise subspace[J]. Journal of Electronics Information Technology, 2014, 36(12): 2876-2881. doi: 10.3724/SP.J.1146.2013.02014.
|
SUN S and PETROPULU A P. Waveform design for MIMO radars with matrix completion[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1400-1414. doi: 10.1109/JSTSP.2015.2469641.
|
CAI J F, CANDES E J, and SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970.
|
HOR R A and JOHNSON C R. Matrix Analysis[M]. Cambridge, U.K: Cambridge University Press, 1985: 1-162.
|
冯明月, 何明浩, 徐璟, 等. 低信噪比条件下宽带欠定信号高精度DOA估计[J]. 电子与信息学报, 2017, 39(6): 1340-1347. doi: 10.11999/JEIT160921.
|
FENG Mingyue, HE Minghao, XU Jing, et al. High accuracy DOA estimation under low SNR condition for wideband underdetermined signals[J]. Journal of Electronics Information Technology, 2017, 39(6): 1340-1347. doi: 10.11999/JEIT160921.
|
OTTERSTEN B, STOICA P, and ROY R. Covariance matching estimation techniques for array signal processing applications[J]. Digital Signal Processing, 1998, 8(3): 185-210. doi: 10.1006/dspr.1998.0316.
|
TIAN Y, SUN X, and ZHAO S. DOA and power estimation using a sparse representation of second-order statistics vector and l0-norm approximation[J]. Signal Processing, 2014, 105(12): 98-108. doi: 10.1016/j.sigpro.2014.05.014.
|
LOBO M, VANDENBERGHE L, BOYD S, et al. Application of second-order cone programming[J]. Linear Algebra and its Applications, 1998, 284(1/3): 193-228. doi: 10.1016/S0024- 3795(98)10032-0.
|
LIAO B, CHAN S C, HUANG L, et al. Iterative methods for subspace and DOA estimation in nonuniform noise[J]. IEEE Transactions on Signal Processing, 2016, 64(12): 3008-3020. doi: 10.1109/TSP.2016.2537265.
|