Citation: | YANG Yizhong, WANG Pengfei, HU Xionglou, WU Nengju. Moving Object Detection Optimization Algorithm Based on Robust Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1309-1315. doi: 10.11999/JEIT170789 |
KULCHANDANI J S and DANGARWALA K J. Moving object detection: review of recent research trends[C]. International Conference on Pervasive Computing, Pune, 2015: 1-5. doi: 10.1109/PERVASIVE.2015.7087138.
|
LIANG R, YAN L, GAO P, et al. Aviation video moving- target detection with inter-frame difference[C]. International Congress on Image and Signal Processing, Yantai, 2010: 1494-1497. doi: 10.1109/CISP.2010.5646303.
|
BARRON J L, FLEET D J, and BEAUCHEMIN S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12(1): 43-77. doi: 10.1007 /BF01420984.
|
DENMAN S, FOOKES C, and SRIDHARAN S. Improved simultaneous computation of motion detection and optical flow for object tracking[C]. Digital Image Computing: Techniques and Applications, Washington, D.C., USA, 2009: 175-182. doi: 10.1109/DICTA.2009.35.
|
周建英, 吴小培, 张超. 基于滑动窗的混合高斯模型运动目标检测算法[J]. 电子与信息学报, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146.2012.01449.
|
ZHOU Jianying, WU Xiaopei, and ZHANG Chao. A moving object detection method based on sliding window gaussian mixture model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1650-1656. doi: 10.3724/SP.J.1146. 2012.01449.
|
STAUFFER Chris and GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]. Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999: 2246-2252. doi: 10.1109/CVPR.1999.784637.
|
MITTAL A and PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation[C]. Computer Vision and Pattern Recognition, Washington, D.C., USA, 2004: 302-309. doi: 10.1109/CVPR.2004.164.
|
JAVED S, OH S H, SOBRAL A, et al. Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints[C]. IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 2015: 930-938. doi: 10.1109/ ICCVW.2015.123.
|
CANDES E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11:1-11:37. doi: 10.1145/1970392.1970395.
|
ZHOU X, YANG C, and YU W. Moving object detection by detecting contiguous outliers in the low-rank representation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2013, 35(3): 597-610. doi: 10.1109/TPAMI.2012. 132.
|
CAO X, LIANG Y, and GUO X. Total variation regularized RPCA for irregularly moving object detection under dynamic background[J]. IEEE Transactions on Cybernetics, 2016, 46(4): 1014-1027. doi: 10.1109/TCYB.2015.2419737.
|
GAO Z, CHEONG L F, and WANG Y X. Block-sparse RPCA for salient motion detection[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2014, 36(10): 1975-1987. doi: 10.1109/TPAMI.2014.2314663.
|
郭小路, 陶海红, 杨东. 联合图形约束和稳健主成分分析的地面动目标检测算法[J]. 电子与信息学报, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462.
|
GUO Xiaolu, TAO Haihong, and YANG Dong. Ground moving target detection based on robust principal component analysis and shape constraint[J]. Journal of Electronics Information Technology, 2016, 38(10): 2475-2481. doi: 10.11999/JEIT151462.
|
蔡念, 周杨, 刘根, 等. 鲁棒主成分分析的运动目标检测综述[J]. 中国图象图形学报, 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001.
|
CAI Nian, ZHOU Yang, LIU Gen, et al. Survey of robust principal component analysis methods for moving object detection[J]. Journal of Image and Graphics, 2016, 21(10): 1265-1275. doi: 10.11834/jig.20161001.
|
ELTANTAWY A and SHEHATA M S. Moving object detection from moving platforms using Lagrange multiplier [C]. IEEE International Conference on Image Processing, Quebec City, Q.C., Canada, 2015: 2586-2590. doi: 10.1109/ ICIP.2015.7351270.
|
SOBRAL A, BOUWMANS T, and ZAHZAH E. Double- constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe, Germany, 2015: 1-6. doi: 10.1109/AVSS.2015.7301753.
|
LIANG D, KANEKO S, HASHIMOTO M, et al. Co- occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes[J]. Pattern Recognition, 2015, 48(4): 1374-1390. doi: 10.1016/j.patcog. 2014.10.020.
|
GRACIELA Ramrez-Alonso and MARIOI Chacn-Murgua. Auto-adaptive parallel SOM architecture with a modular analysis for dynamic object segmentation in videos[J]. Neurocomputing, 2016, 175: 990-1000. doi: 10.1016/j.neucom. 2015.04.118.
|