Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
YANG Aiping, WANG Nan, PANG Yanwei, YANG Suhui. Nighttime Haze Removal Based on New Imaging Model with Artificial Light Sources[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1330-1337. doi: 10.11999/JEIT170704
Citation: YANG Aiping, WANG Nan, PANG Yanwei, YANG Suhui. Nighttime Haze Removal Based on New Imaging Model with Artificial Light Sources[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1330-1337. doi: 10.11999/JEIT170704

Nighttime Haze Removal Based on New Imaging Model with Artificial Light Sources

doi: 10.11999/JEIT170704
Funds:

The National Natural Science Foundation of china (61372145, 61472274, 61632081)

  • Received Date: 2017-07-17
  • Rev Recd Date: 2018-03-07
  • Publish Date: 2018-06-19
  • The non-uniform illumination, low brightness, serious color deviation and halo effects around artificial light sources lead to the difficulty in haze removal for night-time image. The existing dehazing methods are mostly designed for daytime image and not applicable to nighttime image. This paper focuses on researching nighttime image dehazing. A new nighttime haze model that accounts for the artificial varying light sources is introduced. Based on this new model, a new dehazing framework is proposed. Firstly, the atmospheric light is estimated based on the low pass filter method. This atmospheric light map can be used to predict the transmission of night scene accurately. Secondly, to solve the problem of halo effects around artificial light sources in existing dehazing methods, a method that estimates the distance between the object of the scene and the artificial light sources based on the image chromaticity is proposed. In this way, the scene objects near to the light source region and objects far away from the light source region can be processed respectively. Finally, as for the color cast, an efficient color correction algorithm based on the histogram matching is presented in this paper. Comparing with existing daytime and nighttime dehazing methods, the experimental results of a number of examples demonstrate the effectiveness of the proposed night-time haze model and the dehazing method.
  • loading
  • NARASIMHAN S and NAYAR S. Vision and the atmosphere [J]. International Journal of Computer Vision, 2002, 48(3): 233-254. doi: 10.1023/A:1016328200723.
    LIU Haibo, YANG Jie, WU Zhengping, et al. A fast single image dehazing method based on dark channel prior and Retinex theory[J]. Acta Automatica Sinica, 2015, 41(7): 1264-1273. doi: 10.16383/j.aas.2015.c140748.
    LI Hui, XIE Weihao, and WANG Xingang. GPU implementation of multi-scale Retinex image enhancement algorithm[C]. IEEE/ACS International Conference of Computer Systems and Applications (AICCSA), Agadir, Morocco, 2016: 1-5.
    AI Y, TSAI P, YAO C, et al. Improved local histogram equalization with gradient-based weighting process for edge preservation[J]. Multimedia Tools and Applications, 2017, 76(1): 1585-1613. doi: 10.1007/s11042-015-3147-7.
    TAN R. Visibility in bad weather from a single image[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Anchorage, USA, 2008: 1-8.
    HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168.
    FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 1-9. doi: 10.1145/1399504.1360671.
    ZHANG Jing, CAO Yang, and WANG Zengfu. Nighttime haze removal based on a new imaging model[C]. IEEE International Conference on Image Processing, Quebec, Canada, 2015: 4557-4561.
    LI Yu, TAN R, and BROWN M. Nighttime haze removal with glow and multiple light colors[C]. IEEE International Conference on Computer Vision(ICCV), Santiago, Chile, 2015: 226-234.
    ANCUTI C, ANCUTI C, VLEESCHOUWER C, et al. Night- time dehazing by fusion[C]. IEEE International Conference on Image Processing(ICIP), Phoenix, USA , 2016: 2256-2260.
    LI Zhengguo, WEI Zhe, WEN Changyun, et al. Detail- enhanced multi-Scale exposure fusion[J]. IEEE Transactions on Image Processing, 2017, 26(3): 1243-1252. doi: 10.1109/ TIP.2017.2651366.
    ZHANG Jin, CAO Yang, FANG Shuai, et al. Fast haze removal for nighttime image using maximum reflectance prior [C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, USA, 2017: 7016-7024.
    PARK D, HAN D K, and KO H. Nighttime image dehazing using local atmospheric selection rule and weighted entropy for visible-light systems[J]. Optical Engineering, 2017, 56(5): 050501. doi: 10.1117/1.OE.56.5.050501.
    NARASIMHAN S and NAYAR S. Shedding light on the weather[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Madison, USA , 2003: 665-672.
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409. doi: 10.1109/ TPAMI.2012.213.
    REINHARD E, STARK M, SHIRLEY P, et al. Photographic tone reproduction for digital images[J]. ACM Transactions on Graphics, 2002, 21(3): 267-276. doi: 10.1145/566570.566575.
    FINLAYSON G and TREZZI E. Shades of gray and colour constancy[C]. Color and Imaging Conference(CIC), Scottsdale, USA, 2004: 37-41.
    FU Xueyang, ZHUANG Peixian, HUANG Yue, et al. A Retinex-based enhancing approach for single underwater image[C]. IEEE International Conference on Image Processing (ICIP), Paris, France, 2015: 4572-4576.
    SHEN Dinggang. Image registration by local histogram matching[J]. Pattern Recognition, 2007, 40(4): 1161-1172. doi: 10.1016/j.patcog.2006.08.012.
    李大鹏, 禹晶, 肖创柏, 等. 图像去雾的无参考客观质量评测方法[J]. 中国图象图形学报, 2011, 16(9): 1753-1757. doi: 10.11834/jig.20110928.
    LI Dapeng, YU Jing, XIAO Chuangbai, et al. No-reference quality assessment method for defogged images[J]. Journal of Image and Graphics, 2011, 16(9): 1753-1757. doi: 10.11834/ jig.20110928.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1951) PDF downloads(217) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return