Citation: | GUO Wei, XU Tao, YU Jianjiang, TANG Keming. Online Sequential Extreme Learning Machine Based on M-estimator and Variable Forgetting Factor[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1360-1367. doi: 10.11999/JEIT170800 |
LUGHOFER E. On-line active learning: A new paradigm to improve practical useability of data stream modeling methods[J]. Information Sciences, 2017, 415(1): 356-376. doi: 10.1016/j.ins.2017.06.038.
|
ZHANG Q, ZHANG P, LONG G, et al. Online learning from trapezoidal data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10): 2709-2723. doi: 10.1109/TKDE.2016.2563424.
|
LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411-1423. doi: 10.1109/TNN.2006. 880583.
|
HUANG G B, ZHU Q Y, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501. doi: 10.1016/j.neucom.2005.12.126.
|
LU X, ZHOU C, HUANG M, et al. Regularized online sequential extreme learning machine with adaptive regulation factor for time-varying nonlinear system[J]. Neurocomputing, 2016, 174(1): 617-626. doi: 10.1016/j.neucom.2015.09.068.
|
WANG X and HAN M. Online sequential extreme learning machine with kernels for nonstationary time series prediction [J]. Neurocomputing, 2014, 145(12): 90-97. doi: 10.1016/ j.neucom.2014.05.068.
|
WANG X and HAN M. Improved extreme learning machine for multivariate time series online sequential prediction[J]. Engineering Applications of Artificial Intelligence, 2015, 40(4): 28-36. doi: 10.1016/j.engappai.2014.12.013.
|
HUYNH H T and WON Y. Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks[J]. Pattern Recognition Letters, 2011, 32(14): 1930-1935. doi: 10.1016/j.patrec.2011.07.016.
|
SUN L, CHEN B, TOH K A, et al. Sequential extreme learning machine incorporating survival error potential[J]. Neurocomputing, 2015, 155(5): 194-204. doi: 10.1016/j. neucom.2014.12.029.
|
SUN J, FUJITA H, CHEN P, et al. Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble[J]. Knowledge-Based Systems, 2017, 120(C): 4-14. doi: 10.1016/ j.knosys.2016.12.019.
|
郭威, 徐涛, 汤克明, 等. 具有广义正则化与遗忘机制的在线贯序超限学习机[J]. 控制与决策, 2017, 32(2): 247-254. doi: 10.13195/j.kzyjc.2015.1385.
|
GUO Wei, XU Tao, TANG Keming, et al. Online sequential extreme learning machine with generalized regularization and forgetting mechanism[J]. Control and Decision, 2017, 32(2): 247-254. doi: 10.13195/j.kzyjc.2015.1385.
|
CELAYA E and AGOSTINI A. Online EM with weight-based forgetting[J]. Neural Computation, 2015, 27(5): 1142-1157. doi: 10.1162/NECO_a_00723.
|
LIM J, LEE S, and PANG H. Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations[J]. Neural Computing and Applications, 2013, 22(3-4): 569-576. doi: 10.1007/s00521-012-0873-x.
|
SOARES S G and ARAUJO R. An adaptive ensemble of on-line Extreme Learning Machines with variable forgetting factor for dynamic system prediction[J]. Neurocomputing, 2016, 171(C): 693-707. doi: 10.1016/j.neucom.2015.07.035.
|
GOLUB G H and VAN LOAN C F. Matrix Computations[M]. Baltimore: JHU Press, 2012: 65.
|
BARRETO G A and BARROS A. A robust extreme learning machine for pattern classification with outliers[J]. Neurocomputing, 2016, 176(C): 3-13. doi: 10.1016/j.neucom. 2014.10.095.
|
ROUSSEEUW P J and LEROY A M. Robust Regression and Outlier Detection[M]. New York: John Wiley Sons, 2005: 43-44.
|
PEREZ-SANCHEZ B, FEONTENLA-ROMERO O, GUIJARRO-BERDINAS B, et al. An online learning algorithm for adaptable topologies of neural networks[J]. Expert Systems with Applications, 2013, 40(18): 7294-7304. doi: 10.1016/j.eswa.2013.06.066.
|
ZHOU X, LIU Z, and ZHU C. Online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Mathematical Problems in Engineering, 2014, 2014(1): 1-11. doi: 10.1155/2014/938548.
|