Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
WANG Gang, HU Xin, MA Runnian, LIU Wenbin. Synchronization Modeling and Stability of Cyberspace Operation Based on Collective Defensive Mechanism[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1515-1519. doi: 10.11999/JEIT170619
Citation: WANG Gang, HU Xin, MA Runnian, LIU Wenbin. Synchronization Modeling and Stability of Cyberspace Operation Based on Collective Defensive Mechanism[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1515-1519. doi: 10.11999/JEIT170619

Synchronization Modeling and Stability of Cyberspace Operation Based on Collective Defensive Mechanism

doi: 10.11999/JEIT170619
Funds:

The National Natural Science Foundation of China (61573017, 61572367, 61401499)

  • Received Date: 2017-06-28
  • Rev Recd Date: 2018-01-08
  • Publish Date: 2018-06-19
  • Based on cyberspace security collective defensive mechanism and its synchronization, uncertainty factors are introduced in the synchronization of cyberspace operation, and the improved synchronization model is established. The stability of cyberspace operation synchronization is analyzed by utilizing Lyapunov function, and synchronization criterions are put forward. What is more, factors that influenced synchronization ability and stability are explored, such as edge connection probability, cyberspace scale, standby elements, and uncertainty probability. Finally, simulations are given. Theoretical research and simulations show that the factors of cyberspace operation synchronization are negatively related with the second eigenvalue and the ratio of minimum eigenvalue to the second eigenvalue, and corresponding negatively related with the cyberspace ecosystems global synchronization stability and local synchronization stability.
  • loading
  • Argonne National Laboratory. Enabling distributed security in cyberspace: Building a healthy and resilient cyber ecosystem with automated collective action[R]. Report of Department of Defense, America, 2011.
    WU Guangyu, SUN Jian, and CHEN Jie. A survery on the security of cyber-physical systems[J]. Control Theory and Technology, 2016, 14(1): 2-10.
    WANG Yinan, LIN Zhiyun, LIANG Xiao, et al. On modeling of electrical cyber-physical systems considering cyber security [J]. Journal of Zhejiang University Science C, 2016, 17(5): 465-478. doi: 10.1631/FITEE.1500446.
    MICHAL C, RAFAL K, MARIA P, et al. Comprehensive approach to increase cyber security and resilience[C]. Proceedings of IEEE the 10th International Conference on Availability, Reliability and Security, Toulouse, 2016: 686-692.
    LIU Lixia, LING Ren, BEI Xiaomeng, et al. Coexistence of synchronization and anti-synchronization of a novel hyperchaotic finance system[C]. Proceedings of IEEE Proceeding of the 34th Chinese Control conference, Hangzhou, 2015: 8585-8589.
    高洋, 李丽香, 彭明海, 等. 多重融合复杂动态网络的自适应同步[J]. 物理学报, 2008, 57(4): 2081-2091.
    GAO Yang, LI Lixiang, PENG Minghai, et al. Adaptive synchronization in untied complex dynamical network with multi-links[J]. Acta Physica Sinica, 2008, 57(4): 2081-2091.
    LUIS M, SARA F, and CLARA G. Complete synchronization and delayed synchronization in couplings[J]. Nonlinear Dynamics, 2015, 79(2): 1615-1624. doi: 10.1007/s11071-014- 1764-8.
    ARIE R, MIRI P, and SHAHAF W. Distributed network synchronization[C]. Proceedings of IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems Tel-Aviv, 2015: 15-19.
    赵明, 周涛, 陈关荣, 等. 复杂网络上动力系统同步的研究进展如何提高网络的同步能力[J]. 物理学进展, 2008, 1(3): 22-34.
    ZHAO Ming, ZHOU Tao, CHEN Guanrong, et al. A review on synchronization of dynamical systems on complex networks: how to enhance the network synchronizability[J]. Progress in Physics, 2008, 1(3): 22-34.
    张檬, 吕翎, 吕娜, 等. 结构与参量不确定的网络与网络之间的混沌同步[J]. 物理学报, 2012, 61(22): 1-5.
    ZHANG Meng, L Ling, L Na, et al. Chaos synchronization between complex networks with uncertain structures and unknown parameters[J]. Acta Physica Sinica, 2012, 61(22): 1-5.
    GUO Peilin and WANG Yuzhen. Matrix expression and vaccination control for epidemic dynamics over dynamic networks[J]. Control Theory and Technology, 2016, 14(1): 1-5.
    孙玺菁, 司守奎. 复杂网络算法与应用[M]. 北京: 国防工业出版社, 2016: 132-187.
    SIVAGANESH G. Master stability function for a class of coupled simple nonlinear electronic circuits[J]. Journal of the Korean Physical Society, 2016, 68(5): 628-632. doi: 10.3938 /jkps.68.628.
    SHU Liang, ZENG Xianlin, and HONG Yiguang. Lyapunov stability and generalized invariance principle for no convex differential inclusions[J]. Control Theory and Technology, 2016, 14(2): 140-150. doi: 10.1007/s11768-016-6037-2.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1141) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return