Advanced Search
Volume 40 Issue 6
May  2018
Turn off MathJax
Article Contents
SONG Tiecheng, LUO Lin, ZHANG Gang, LUO Zhongtao, ZHANG Tianqi. Robust Texture Classification Method Based on Pyramid Decomposition and Sectored Local Mean Binary Pattern[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1301-1308. doi: 10.11999/JEIT170884
Citation: SONG Tiecheng, LUO Lin, ZHANG Gang, LUO Zhongtao, ZHANG Tianqi. Robust Texture Classification Method Based on Pyramid Decomposition and Sectored Local Mean Binary Pattern[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1301-1308. doi: 10.11999/JEIT170884

Robust Texture Classification Method Based on Pyramid Decomposition and Sectored Local Mean Binary Pattern

doi: 10.11999/JEIT170884
Funds:

The National Natural Science Foundation of China (61702065, 61671095), The Project of Key Laboratory of Signal and Information Processing of Chongqing (CSTC2009 CA2003)

  • Received Date: 2017-09-20
  • Rev Recd Date: 2018-02-01
  • Publish Date: 2018-06-19
  • The traditional Local Binary Pattern (LBP) has limited feature discrimination and is sensitive to the noise. In order to alleviate these problems, this paper proposes a method to extract texture features based on pyramid decomposition and sectored local mean binary pattern. First, the pyramid decomposition is performed on the original image to obtain low-frequency and high-frequency (difference) images with different decomposition levels. To extract robust yet discriminative features, thresholding technique is further used to transform the high-frequency images into positive and negative high-frequency images. Then, based on local averaging operations, Sectored Local Mean Binary Pattern (SLMBP) is proposed and used to compute texture feature codes at different decomposition levels. Finally, the texture features are obtained by joint coding across frequency bands and by histogram weighting across decomposition levels. Experiments on three publicly available texture databases (Outex, Brodatz and UIUC) demonstrate that the proposed method can effectively improve the classification accuracy of texture images both in noise-free conditions and in the presence of different levels of Gaussian noise.
  • loading
  • WEN Dengwei, ZHANG Dongbo, TANG Hongzhong, et al. HEp-2 cell classification by fusing texture and shape features [J]. Journal of Electronics Information Technology, 2017, 39(7): 1599-1605. doi: 10.11999/JEIT161090.
    文登伟, 张东波, 汤红忠, 等. 融合纹理与形状特征的HEp-2细胞分类[J]. 电子与信息学报, 2017, 39(7): 1599-1605. doi: 10. 11999/JEIT161090.
    AL-SAHAF H, AL-SAHAF A, XUE B, et al. Automatically evolving rotation-invariant texture image descriptors by genetic programming[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(1): 83-101. doi: 10.1109/TEVC.2016. 2577548.
    JIA S, HU J, ZHU J S, et al. Three-dimensional local binary patterns for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2399-2413. doi: 10.1109/TGRS.2016.2642951.
    SONG T C, LI H L, MENG F M, et al. Exploring space- frequency co-occurrences via local quantized patterns for texture representation[J]. Pattern Recognition, 2015, 48(8): 2621-2632. doi: 10.1016/j.patcog.2015.03.003.
    WANG H, SANG M Y, HAN D K, et al. A feature descriptor based on the local patch clustering distribution for illumination-robust image matching[J]. Pattern Recognition Letters, 2017, 94: 46-54. doi: 10.1016/j.patrec.2017.05.010.
    LIU L, FIEGUTH P W, GUO Y L, et al. Local binary features for texture classification: Taxonomy and experimental study[J]. Pattern Recognition, 2017, 62: 135-160. doi: 10.1016/j.patcog.2016.08.032.
    OJALA T, PIETIKNEN M, and MENP T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109 /TPAMI.2002.1017623.
    GUO Z H and ZHANG L. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663. doi: 10.1109/TIP.2010.2044957.
    PAN Z B, LI Z Y, FAN H C, et al. Feature based local binary pattern for rotation invariant texture classification[J]. Expert Systems with Applications, 2017, 88(12): 238-248. doi: 10.1016/j.eswa.2017.07.007.
    SONG T C, LI H L, MENG F M, et al. Noise-robust texture description using local contrast patterns via global measures[J]. IEEE Signal Processing Letters, 2014, 21(1): 93-96. doi: 10.1109/LSP.2013.2293335.
    REN J F, JIANG X D, and YUAN J S. Noise-resistant local binary pattern with an embedded error-correction mechanism [J]. IEEE Transactions on Image Processing, 2013, 22(10): 4049-4060. doi: 10.1109/TIP.2013.2268976.
    LIU L, LONG Y, FIEGUTH P W, et al. BRINT: Binary rotation invariant and noise tolerant texture classification[J]. IEEE Transactions on Image Processing, 2014, 23(7): 3071-3084. doi: 10.1109/TIP.2014.2325777.
    ZHANG M and GUNTURK B K. Multiresolution bilateral filtering for image denoising[J]. IEEE Transactions on Image Processing, 2008, 17(12): 2324-2333. doi: 10.1109/TIP.2008. 2006658.
    ZHAO Y, JIA W, HU R X, et al. Completed robust local binary pattern for texture classification[J]. Neurocomputing, 2013, 106(4): 68-76. doi: 10.1016/j.neucom.2012.10.017.
    ZHAO Y, HUANG D S, and JIA W. Completed local binary count for rotation invariant texture classification[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4492-4497. doi: 10.1109/TIP.2012.2204271.
    TAN X Y and TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1635-1650. doi: 10.1109/TIP.2010.2042645.
    HE J, JI H, and YANG X. Rotation invariant texture descriptor using local shearlet-based energy histograms[J]. IEEE Signal Processing Letters, 2013, 20(9): 905-908. doi: 10.1109/LSP.2013.2267730.
    KHELLAH F M. Texture classification using dominant neighborhood structure[J]. IEEE Transactions on Image Processing, 2011, 20(11): 3270-3279. doi: 10.1109/TIP.2011. 2143422.
    SHAKOOR M H and TAJERIPOUR F. Noise robust and rotation invariant entropy features for texture classification [J]. Multimedia Tools and Applications, 2017, 76(6): 8031-8066. doi: 10.1007/s11042-016-3455-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1474) PDF downloads(166) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return