2017, 39(1): 183-190.
doi: 10.11999/JEIT160120
摘要:
针对各种环境声对声音事件识别的影响,该文提出一种基于优化的正交匹配追踪(Orthogonal Matching Pursuit, OMP)声音事件识别方法。首先,利用OMP稀疏分解并重构声音信号,保留声音信号的主体部分,减小噪声的影响。其中,使用粒子群(Particle Swarm Optimization, PSO)算法优化搜索最优原子,实现OMP的快速稀疏分解。接着,对重构声音信号提取Mel频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCCs),与OMP时-频特征和基频(PITCH)特征,组成优化OMP的复合特征。最后,通过优化OMP复合特征,使用随机森林(Random Forests, RF)对40种声音事件在不同环境不同信噪比下进行识别。实验结果表明,优化OMP复合特征结合RF的方法能有效地识别各种环境下的声音事件。