BORTH D, JI R, CHEN T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]. 21st ACM International Conference on Multimedia, Barcelona, Spain, 2013: 223-232. doi: 10.1145/2502081.2502282.
|
李祖贺, 樊养余. 基于视觉的情感分析研究综述[J]. 计算机应用研究, 2015, 32(12): 3521-3526. doi: 10.3969/j.issn.1001- 3695.2015.12.001.
|
LI Zuhe and FAN Yangyu. Survey on visual sentiment analysis[J]. Application Research of Computers, 2015, 32(12): 3521-3526. doi: 10.3969/j.issn.1001-3695.2015.12.001.
|
MACHAJDIK J and HANBURY A. Affective image classification using features inspired by psychology and art theory[C]. 18th ACM International Conference on Multimedia, Firenze, Italy, 2010: 83-92. doi: 10.1145/ 1873951.1873965.
|
ZHANG H, G?NEN M, YANG Z, et al. Understanding emotional impact of images using Bayesian multiple kernel learning[J]. Neurocomputing, 2015, 165: 3-13. doi: 10.1016/ j.neucom.2014.10.093.
|
ZHAO S, GAO Y, JIANG X, et al. Exploring principles-of-art features for image emotion recognition[C]. 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 2014: 47-56. doi: 10.1145/2647868.2654930.
|
ZHANG H, YANG Z, G?NEN M, et al. Affective abstract image classification and retrieval using multiple kernel learning[C]. 20th International Conference on Neural Information Processing, Daegu, South Korea, 2013: 166-175. doi: 10.1007/978-3-642-42051-1_22.
|
ZHANG H, AUGILIUS E, HONKELA T, et al. Analyzing emotional semantics of abstract art using low-level image features[C]. 10th International Symposium on Intelligent Data Analysis, Porto, Portugal, 2011: 413-423. doi: 10.1007/ 978-3-642-24800-9_38.
|
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539.
|
李寰宇, 毕笃彦, 查宇飞, 等. 一种易于初始化的类卷积神经网络视觉跟踪算法[J]. 电子与信息学报, 2016, 38(1): 1-7. doi: 10.11999/JEIT150600.
|
LI Huanyu, BI Duyan, ZHA Yufei, et al. An easily initialized visual tracking algorithm based on similar structure for convolutional neural network[J]. Journal of Electronics Information Technology, 2016, 38(1): 1-7. doi: 10.11999/ JEIT150600.
|
YOU Q, LUO J, JIN H, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]. 29th AAAI Conference on Artificial Intelligence (AAAI), Austin, TX, USA, 2015: 381-388.
|
李祖贺, 樊养余, 王凤琴. YUV空间中基于稀疏自动编码器的无监督特征学习[J]. 电子与信息学报, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557.
|
LI Zuhe, FAN Yangyu, and WANG Fengqin. Unsupervised feature learning with sparse autoencoders in YUV space[J]. Journal of Electronics Information Technology, 2016, 38(1): 29-37. doi: 10.11999/JEIT150557.
|
ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184. doi: 10.1109/TGRS.2014.2357078.
|
杨兴明, 吴克伟, 孙永宣, 等. 可迁移测度准则下的协变量偏移修正多源集成方法[J]. 电子与信息学报, 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323.
|
YANG Xingming, WU Kewei, SUN Yongxuan, et al. Modified covariate-shift multi-source ensemble method in transferability metric[J]. Journal of Electronics Information Technology, 2015, 37(12): 2913-2920. doi: 10.11999/JEIT150323.
|
庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39. doi: 10.13328/j.cnki.jos.004631.
|
ZHUANG Fuzhen, LUO Ping, HE Qing, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1): 26-39. doi: 10.13328/j.cnki.jos.004631.
|
DENG J, ZHANG Z, EYBEN F, et al. Autoencoder-based unsupervised domain adaptation for speech emotion recognition[J]. IEEE Signal Processing Letters, 2014, 21(9): 1068-1072. doi: 10.1109/LSP.2014.2324759.
|
YANG X, ZHANG T, and XU C. Cross-domain feature learning in multimedia [J]. IEEE Transactions on Multimedia, 2015, 17(1): 64-78. doi: 10.1109/TMM.2014.2375793.
|
ZHOU J T, PAN S J, TSANG I W, et al. Hybrid heterogeneous transfer learning through deep learning[C]. 28th AAAI Conference on Artificial Intelligence (AAAI), Quebec City, QC, Canada, 2014: 2213-2219.
|
KOUNO K, SHINNOU H, SASAKI M, et al. Unsupervised domain adaptation for word sense disambiguation using stacked denoising autoencoder[C]. 29th Pacific Asia Conference on Language, Information and Computation (PACLIC 29), Shanghai, China, 2015: 224-231.
|
COATES A, LEE H, and NG A Y. An analysis of single-layer networks in unsupervised feature learning[C]. 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 2011: 215-223.
|
WANG R, DU L, YU Z, et al. Infrared and visible images fusion using compressed sensing based on average gradient[C]. 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 2013: 1-4. doi: 10.1109/ICMEW.2013.6618257.
|
L?NGKVIST M and LOUTFI A. Learning feature representations with a cost-relevant sparse autoencoder[J]. International Journal of Neural Systems, 2015, 25(1): 1-11. doi: 10.1142/S0129065714500348.
|
LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11. doi: 10.1186/s13634-015- 0222-1.
|
VEDALDI A and LENC K. MatConvNet: convolutional neural networks for matlab[C]. 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689-692. doi: 10.1145/2733373.2807412.
|