高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区域对比度增强的二值化算法

卢迪 黄鑫 柳长源 林雪 张华玉 严俊

卢迪, 黄鑫, 柳长源, 林雪, 张华玉, 严俊. 基于区域对比度增强的二值化算法[J]. 电子与信息学报, 2017, 39(1): 240-244. doi: 10.11999/JEIT160197
引用本文: 卢迪, 黄鑫, 柳长源, 林雪, 张华玉, 严俊. 基于区域对比度增强的二值化算法[J]. 电子与信息学报, 2017, 39(1): 240-244. doi: 10.11999/JEIT160197
LU Di, HUANG Xin, LIU Changyuan, LIN Xue, ZHANG Huayu, YAN Jun. Binarization Method Based on Local Contrast Enhancement[J]. Journal of Electronics & Information Technology, 2017, 39(1): 240-244. doi: 10.11999/JEIT160197
Citation: LU Di, HUANG Xin, LIU Changyuan, LIN Xue, ZHANG Huayu, YAN Jun. Binarization Method Based on Local Contrast Enhancement[J]. Journal of Electronics & Information Technology, 2017, 39(1): 240-244. doi: 10.11999/JEIT160197

基于区域对比度增强的二值化算法

doi: 10.11999/JEIT160197
基金项目: 

哈尔滨市科技创新人才项目(2014RFQXJ163)

Binarization Method Based on Local Contrast Enhancement

Funds: 

The Science and Technology Innovation Talents Project of Harbin (2014RFQXJ163)

  • 摘要: 降质文档图像二值化问题是图像处理领域的一个难点。该文通过分析图像不同区域灰度对比度的差异,为降质文档图像提出了新的二值化算法。首先利用四叉树原理自适应划分区域,再对不同灰度对比度区域采用不同对比度增强法以调整局部区域内的灰度对比度,最后根据灰度值出现的频率确定局部阈值。该文测试了随机拍摄的降质图像及DIBCO(Document Image Binarization COntest)图像集中的50幅图像。与4种经典算法比较,所提算法处理的降质图像具有最高F-measure值和峰值信噪比(PSNR值)。
  • OTSU N. A threshold selection method from gray level histograms[J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979. 4310076.
    申铉京, 龙建武, 陈海鹏, 等. 三维直方图重建和降维的Otsu阈值分割算法[J]. 电子学报, 2011, 39(5): 1108-1114.
    SHEN Xuanjing, LONG Jianwu, CHEN Haipeng, et al. Otsu thresholding algorithm based on rebuilding and dimension reduction of the 3-dimensional histogram[J]. Acta Electronica Sinica, 2011, 39(5): 1108-1114.
    NIBLACK W. An Introduction to Digital Image Processing [M]. Englewood Cliffs, NJ, US, Prentice-Hall, Inc., 1986: 115-116.
    SAUVOLA J and PIETIKAINEN M. Adaptive document image binarization[J]. Pattern Recognit, 2000, 33(2): 225-236. doi: 10.1016/S0031-3203(99)00055-2.
    MA L and STAUNTON R C. A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns[J]. Pattern Recognition, 2007, 40(11): 3005-3011. doi: 10.1016/j.patcog.2007.02.005.
    CHOU C H, and LIN W H, and CHANG F. A binarization method with learning-build rules for document images produced by cameras[J]. Pattern Recognition, 2010, 43(4): 1518-1530. doi: 10.1016/j.patcog.2009.10.016.
    龙建武, 申铉京, 臧慧, 等. 高斯尺度空间下估计背景的自适应阈值分割算法[J]. 自动化学报, 2014, 40(8): 1773-1782. doi: 10.3724/SP.J.1004.2014.01773.
    LONG Jianwu, SHEN Xuanjing, ZANG Hui, et al. An adaptive thresholding algorithm by background estimation in Gaussian scale space[J]. Acta Automatica Sinica, 2014, 40(8): 1773-1782. doi: 10.3724/SP.J.1004.2014.01773.
    SINGH B M, SHARMA R, GHOSH D, et al. Adaptive binarization of severely degraded and non-uniformly illuminated documents[J]. International Journal of Document Analysis and Recognition, 2014, 17(4): 393-412. doi: 10.1007/ s10032-014-0219-6.
    MESQUITA R G, MELLO C A B, and ALMEIDA L H E V. A new thresholding algorithm for document images based on the perception of objects by distance[J]. Integrated Computer-Aided Engineering, 2014, 21(2): 133-146. doi: 10.3233/ICA-130453.
    MILYAEV S, BARINOVA O, NOVIKOVA T, et al. Fast and accurate scene text understanding with image binarization and off-the-shelf OCR[J]. International Journal of Document Analysis and Recognition, 2015, 18(2): 169-182. doi: 10.1007/ s10032-015-0240-4.
    ROSENFELD A and KAK A C. Digital Picture Processing [M]. 2nd ed. New York, Morgan Kaufmann: Academic Press, 1982: 92-95.
  • 加载中
计量
  • 文章访问数:  1562
  • HTML全文浏览量:  150
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-03
  • 修回日期:  2016-07-12
  • 刊出日期:  2017-01-19

目录

    /

    返回文章
    返回