高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层次分类的手机位置无关的动作识别

王昌海 许昱玮 张建忠

王昌海, 许昱玮, 张建忠. 基于层次分类的手机位置无关的动作识别[J]. 电子与信息学报, 2017, 39(1): 191-197. doi: 10.11999/JEIT160253
引用本文: 王昌海, 许昱玮, 张建忠. 基于层次分类的手机位置无关的动作识别[J]. 电子与信息学报, 2017, 39(1): 191-197. doi: 10.11999/JEIT160253
WANG Changhai, XU Yuwei, ZHANG Jianzhong . Hierarchical Classification-based Smartphone Displacement Free Activity Recognition[J]. Journal of Electronics & Information Technology, 2017, 39(1): 191-197. doi: 10.11999/JEIT160253
Citation: WANG Changhai, XU Yuwei, ZHANG Jianzhong . Hierarchical Classification-based Smartphone Displacement Free Activity Recognition[J]. Journal of Electronics & Information Technology, 2017, 39(1): 191-197. doi: 10.11999/JEIT160253

基于层次分类的手机位置无关的动作识别

doi: 10.11999/JEIT160253
基金项目: 

天津市重大科技专项(13ZCZDGX01098),天津市自然科学基金(16JCQNJC00700)

Hierarchical Classification-based Smartphone Displacement Free Activity Recognition

Funds: 

The Key Project in Tianjin Science Technology Pillar Program (13ZCZDGX01098), The Natural Science Foundation of Tianjin (16JCQNJC00700)

  • 摘要: 使用智能手机中集成的加速度传感器识别用户日常动作在惯性定位、个性化推荐、运动量评估等领域有重要的应用。手机位置不固定导致的动作识别率低下是该领域面临的主要问题。为了提高手机位置不固定时的动作识别率,该文提出一种基于层次分类的动作识别方法。该方法将动作识别分为多层,每一层包含一个分类器。在训练某一层分类器时,首先根据本层训练样本集进行特征选择并训练分类器。然后使用训练得到的分类器对训练样本分类,并计算分类结果的可信度。最后通过对低可信度的样本进行剪枝得到下层分类器的训练样本。对未知类别的样本分类时,首先使用第1层分类器分类。如果分类结果可信度较高,则分类结束;否则使用下层分类器分类,直至所有分类器遍历完。实验部分通过对采集的动作数据进行仿真,验证了该文方法的有效性。结果表明,与单层分类器相比,该方法可以将动作识别率由85.2%提高至89.2%。
  • ANDREAS Bulling, ULF Blanke, and BERNT Schiele. A tutorial on human activity recognition using body-worn inertial sensors[J]. ACM Computing Surveys, 2014, 46(3): 1-33.
    CHIANG Junghsien, YANG Peiching, and TU Hsuan. Pattern analysis in daily physical activity data for personal health management[J]. Pervasive and Mobile Computing, 2014, 13: 13-25.
    SINZIANA Mazilu, ULF Blanke, MORAN Dorfman, et al. A wearable assistant for gait training for parkinsons disease with freezing of gait in out-of-the-lab Environments[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(1): 1-5.
    PARK Jungeun, AIM Patel, DOROTHY Curtis, et al. Online pose classification and walking speed estimation using handheld devices[C]. The 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 2012: 113-122.
    JORGE Luis Reyes Ortiz. Smartphone-based human activity recognition[D]. [Ph.D. dissertation], Polytechnic University of Catalonia, 2014: 97-114.
    CHEN Yiqiang, ZHAO Zhongtang, WANG Shuangquan, et al. Extreme learning machine-based device displacement free activity recognition model[J]. Soft Computing, 2012, 16(9): 1617-1625.
    WANG Changhai, ZHANG Jianzhong, LI Meng, et al. A smartphone location independent activity recognition method based on the angle feature[C]. International Conference on Algorithms and Architectures for Parallel Processing, Dalian, China, 2014: 179-191.
    SEYED Amir Hoseini-tabatabaei, ALEXANDER Gluhak, and RAHIM Tafazolli. A survey on smartphone-based systems for opportunistic user context recognition[J]. ACM Computing Surveys, 2013, 45(3): 1-27.
    张静, 宋锐, 郁文贤, 等. 基于混淆矩阵和 Fisher 准则构造层次化分类器[J]. 软件学报, 2005, 16(9): 1560-1567.
    ZHANG Jing, SONG Rui, YU Wenxian, et al. Construction of hierarchical classifiers based on the confusion matrix and Fishers principle[J]. Journal of Software, 2005, 16(9): 1560-1567.
    高洪波, 王洪玉, 刘晓凯. 一种基于分层学习的关键点匹配算法[J]. 电子与信息学报, 2013, 35(11): 2751-2757. doi: 10.3724/SP.J.1146.2013.00347.
    GAO Hongbo, WANG Hongyu, and LIU Xiaokai. A keypoint matching method based on hierarchical learning[J]. Journal of Electronics Information Technology, 2013, 35(11): 2751-2757. doi: 10.3724/SP.J.1146.2013.00347.
    张翔, 邓赵红, 王士同, 等. 极大熵 Relief 特征加权[J]. 计算机研究与发展, 2015, 48(6): 1038-1048.
    ZHANG Xiang, DENG Zhaohong, WANG Shitong, et al. Maximum entropy relief feature weighting[J]. Journal of Computer Research and Development, 2015, 48(6): 1038-1048.
    XUE Yang and JIN Lianwen. A naturalistic 3D acceleration- based activity dataset benchmark evaluations[C]. International Conference on Systems Man and Cybernetics, Istanbul, Turkey, 2010: 4081-4085.
    ATTILA Reiss. Personalized mobile physical activity monitoring for everyday life[D]. [Ph.D. dissertation], Technical University of Kaiserslautern, 2014: 111-127.
    HENAR Martin, ANA M Bermardos, JOSUE Iglesias, et al. Activity logging using lightweight classification techniques in mobile devices[J]. Personal and Ubiquitous Computing, 2013, 17(4): 675-695.
  • 加载中
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  152
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-17
  • 修回日期:  2016-08-01
  • 刊出日期:  2017-01-19

目录

    /

    返回文章
    返回