高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优化的正交匹配追踪声音事件识别

李应 陈秋菊

李应, 陈秋菊. 基于优化的正交匹配追踪声音事件识别[J]. 电子与信息学报, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120
引用本文: 李应, 陈秋菊. 基于优化的正交匹配追踪声音事件识别[J]. 电子与信息学报, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120
LI Ying, CHEN Qiuju. Sound Event Recognition Based on Optimized Orthogonal Matching Pursuit[J]. Journal of Electronics & Information Technology, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120
Citation: LI Ying, CHEN Qiuju. Sound Event Recognition Based on Optimized Orthogonal Matching Pursuit[J]. Journal of Electronics & Information Technology, 2017, 39(1): 183-190. doi: 10.11999/JEIT160120

基于优化的正交匹配追踪声音事件识别

doi: 10.11999/JEIT160120
基金项目: 

国家自然科学基金(61075022)

Sound Event Recognition Based on Optimized Orthogonal Matching Pursuit

Funds: 

The National Natural Science Foundation of China (61075022)

  • 摘要: 针对各种环境声对声音事件识别的影响,该文提出一种基于优化的正交匹配追踪(Orthogonal Matching Pursuit, OMP)声音事件识别方法。首先,利用OMP稀疏分解并重构声音信号,保留声音信号的主体部分,减小噪声的影响。其中,使用粒子群(Particle Swarm Optimization, PSO)算法优化搜索最优原子,实现OMP的快速稀疏分解。接着,对重构声音信号提取Mel频率倒谱系数(Mel-Frequency Cepstral Coefficients, MFCCs),与OMP时-频特征和基频(PITCH)特征,组成优化OMP的复合特征。最后,通过优化OMP复合特征,使用随机森林(Random Forests, RF)对40种声音事件在不同环境不同信噪比下进行识别。实验结果表明,优化OMP复合特征结合RF的方法能有效地识别各种环境下的声音事件。
  • MALIK H. Acoustic environment identification and its applications to audio forensics[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(11): 1827-1837. doi: 10.1109/tifs.2013.2280888.
    HEITTOL T, MESAROS A, VIRTANEN T, et al. Sound event detection in multisource environments using source separation[C]. CHiME 2011 Workshop on Machine Listening in Multisource Environments, Florence, Italy, 2011: 36-40.
    SHI Z, HAN J, ZHENG T, et al. Identification of objectionable audio segments based on pseudo and heterogeneous mixture models[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(3): 611-623. doi: 10.1109/tasl.2012.2229980.
    NTALAMPIRAS S, POTAMITIS I, and FAKOTAKIS N. An adaptive framework for acoustic monitoring of potential hazards[J]. EURASIP Journal on Audio, Speech, and Music Processing, 2009, 2009(1): 1-15. doi: 10.1155/2009/594103.
    ZHAO H and MALIK H. Audio recording location identification using acoustic environment signature[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(11): 1746-1759. doi: 10.1109/tifs.2013.2278843.
    VARGHEES V N and RAMACHANDRAN K I. A novel heart sound activity detection framework for automated heart sound analysis[J]. Biomedical Signal Processing and Control, 2014, 13: 174-188. doi: 10.1016/j.bspc.2014.05.002.
    NTALAMPIRAS S, POTAMITIS I, and FAKOTAKIS N. On acoustic surveillance of hazardous situations[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 165-168. doi: 10.1109/icassp. 2009.4959546.
    MCLOUGHLIN I, ZHANG H, XIE Z, et al. Robust sound event classification using deep neural networks[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2015, 23(3): 540-552. doi: 10.1109/taslp.2015.2389618.
    SHARAN R V and MOIR T J. Robust audio surveillance using spectrogram image texture feature[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, Australia, 2015: 1956-1960. doi: 10.1109/icassp.2015.7178312.
    DENNIS J, TRAN H D, and CHNG E S. Image feature representation of the subband power distribution for robust sound event classification[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(2): 367-377. doi: 10.1109/tasl.2012.2226160.
    颜鑫, 李应. 利用抗噪幂归一化倒谱系数的鸟类声音识别[J]. 电子学报, 2013, 41(2): 295-300. doi: 10.3969/j.issn.0372-2112. 2013.02.014.
    YAN X and LI Y. Anti-noise power normalized cepstral coefficients in bird sounds recognition[J]. Acta Electronica Sinica, 2013, 41(2): 295-300. doi: 10.3969/j.issn.0372-2112. 2013.02.014.
    LI Y and WU Z. Animal sound recognition based on double feature of spectrogram in real environment[C]. IEEE International Conference on Wireless Communications Signal Processing, Nanjing, China, 2015: 1-5. doi: 10.1109/ wcsp.2015.7341003.
    CHANG K M and LIU S H. Gaussian noise filtering from ECG by Wiener filter and ensemble empirical mode decomposition[J]. Journal of Signal Processing Systems, 2011, 64(2): 249-264. doi: 10.1007/s11265-009-0447-z.
    LEE Y K, JUNG G W, and KWON O W. Speech enhancement by Kalman filtering with a particle filter-based preprocessor[C]. IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 2013: 340-341. doi: 10.1109/ice.2013.6486919.
    VERMA N and VERMA A K. Real time adaptive denoising of musical signals in wavelet domain[C]. Nirma University International Conference on Engineering, Ahmedabad, India, 2012: 1-5. doi: 10.1109/nuicone.2012.649323.
    周晓敏, 李应. 基于 Radon 和平移不变性小波变换的鸟类声音识别[J]. 计算机应用, 2014, 34(5): 1391-1396. doi: 10. 11772/j.issn.1001-9081.2014.05.1391.
    ZHOU X and LI Y. Bird sounds recognition based on Radon and translation invariant discrete wavelet transform[J]. Journal of Computer Applications, 2014, 34(5): 1391-1396. doi: 10.11772/j.issn.1001-9081.2014.05.1391.
    CHU S, NARAYANAN S, and KUO C C J. Environmental sound recognition with time-frequency audio features[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2009, 17(6): 1142-1158. doi: 10.1109/tasl.2009. 2017438.
    WANG J C, LIN C H, CHEN B W, et al. Gabor-based nonuniform scale-frequency map for environmental sound classification in home automation[J]. IEEE Transactions on Automation Science and Engineering, 2014, 11(2): 607-613. doi: 10.1109/tase.2013.2285131.
    MALLAT S G and ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082.
    SOUSSEN C, GRIBONVAL R, IDIER J, et al. Joint k-step analysis of orthogonal matching pursuit and orthogonal least squares[J]. IEEE Transactions on Information Theory, 2013, 59(5): 3158-3174. doi: 10.1109/tit.2013.2238606.
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324.
    KENNEDY J. Particle Swarm Optimization[M]. Washington, US: Springer, 2011: 760-766. doi: 10.1007/978-0-387-30164- 8_630.
    马超, 邓超, 熊尧, 等. 一种基于混合遗传和粒子群的智能优化算法[J]. 计算机研究与发展, 2015, 50(11): 2278-2286. doi: 10.7544/issn1000-1239.2013.20111484.
    MA C, DENG C, XIONG Y, et al. An intelligent optimization algorithm based on hybrid of GA and PSO[J]. Computer Research and Development, 2015, 50(11): 2278-2286. doi: 10.7544/issn1000-1239.2013.20111484.
    LI S and FANG L. Signal denoising with random refined orthogonal matching pursuit[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(1): 26-34. doi: 10.1109/tim.2011.2157547.
    CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27. doi: 10.1145/1961189. 1961199.
  • 加载中
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  140
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 修回日期:  2016-12-06
  • 刊出日期:  2017-01-19

目录

    /

    返回文章
    返回