摘要:
压缩感知(Compressed Sensing, CS)稀疏信号重构其本质就是在稀疏约束条件下求解欠定线性方程组,基于迭代加权Lp(001,p=2)类范数算法减小重构误差成为近来稀疏信号重构热点之一。该文提出了基追踪- Moore-Penrose逆矩阵(Basis Pursuit-Moore-Penrose Inverse Matrix, BP-MPIM)算法:(1)由基追踪(Basis Pursuit, BP)算法得到稀疏信号非零元素位置(亦称支撑集,对应于测量矩阵的列);(2)通过求解由支撑集所对应测量矩阵的子矩阵和CS测量值组成的超定线性方程组实现稀疏信号重构,并证明了由此重构的稀疏信号是其唯一最小二次范数解。仿真的稀疏信号和实测宽带雷达回波信号脉冲压缩结果表明,和原来算法相比,新算法具有更小的重构误差,且误差只存在于其支撑集内。