2022, 44(7): 2547-2558.
doi: 10.11999/JEIT210331
刊出日期:2022-07-10
超声图像去噪对提高超声图像的视觉质量和完成其他相关的计算机视觉任务都至关重要。超声图像中的特征信息与斑点噪声信号较为相似,用已有的去噪方法对超声图像去噪,容易造成超声图像纹理特征丢失,这会对临床诊断的准确性产生严重的干扰。因此,在去除斑点噪声的过程中,需尽量保留图像的边缘纹理信息才能更好地完成超声图像去噪任务。该文提出一种基于残差编解码器的通道自适应去噪模型(RED-SENet),能有效去除超声图像中的斑点噪声。在去噪模型的解码器部分引入注意力反卷积残差块,使本模型可以学习并利用全局信息,从而选择性地强调关键通道的内容特征,抑制无用特征,能提高模型去噪的性能。在2个私有数据集和2个公开数据集上对该模型进行定性评估和定量分析,与一些先进的方法相比,该模型的去噪性能有显著提升,并在噪声抑制以及结构保持方面具有良好的效果。
2025, 47(7): 2237-2248.
doi: 10.11999/JEIT241063
刊出日期:2025-07-22
在量子图像传感器(QIS)搭建的单光子成像系统中,场景信息蕴含于QIS输出的二值量化数据中,从二值比特流重建原始图像为极度不适定问题。针对现有重建算法在低过采样率重建质量低,对读出噪声敏感的问题,该文提出一种基于扩散模型和边缘信息引导的QIS图像重建算法,以实现快速高质量重建。该算法将测量子空间约束引入无条件的扩散模型反向扩散过程以满足数据一致性和自然图像数据分布的要求,最大似然估计算法重建图像的边缘轮廓成分作为辅助信息引导采样,在减少采样步数的同时提升重建质量。该算法在多个通用数据集上进行测试,并与典型的QIS图像重建算法和基于扩散模型的方法进行比较,实验结果表明,该算法有效地改善了图像重建质量,且对读出噪声具有较强的鲁棒性。
2020, 42(9): 2293-2301.
doi: 10.11999/JEIT190723
刊出日期:2020-09-27
受光场相机微透镜几何标定精度的影响,4D光场在角度方向上的解码误差会造成积分后的重聚焦图像边缘信息损失,从而降低全聚焦图像融合的精度。该文提出一种基于边缘增强引导滤波的光场全聚焦图像融合算法,通过对光场数字重聚焦得到的多幅重聚焦图像进行多尺度分解、特征层决策图引导滤波优化来获得最终全聚焦图像。与传统融合算法相比,该方法对4D光场标定误差带来的边缘信息损失进行了补偿,在重聚焦图像多尺度分解过程中增加了边缘层的提取来实现图像高频信息增强,并建立多尺度图像评价模型实现边缘层引导滤波参数优化,可获得更高质量的光场全聚焦图像。实验结果表明,在不明显降低融合图像与原始图像相似性的前提下,该方法可有效提高全聚焦图像的边缘强度和感知清晰度。
2025, 47(8): 2665-2674.
doi: 10.11999/JEIT250039
刊出日期:2025-08-27
现有的图像语义通信研究大多集中在高斯信道和瑞利衰落信道等理想化场景中。在实际的无线通信环境中,信道特性往往表现为复杂的多径衰落效应,需要复杂的收发端链路信号处理机制。针对这一现状,该文结合正交频分复用(OFDM)技术,提出一种基于Swin Transformer的宽带无线图像传输语义通信(WWIT-SC)系统,旨在解决多径衰落信道下的图像传输问题。WWIT-SC采用Swin Transformer作为语义编解码器的骨干网络,通过在语义编解码器处引入基于信道状态信息(CSI)和坐标注意力(CA)机制,使模型能够将关键的语义特征精确地映射到子载波上,并可以适应时变的信道条件。此外,在接收端设计了信道估计子网(CES)以补偿信道估计误差,从而提升CSI的精确度。实验结果表明,相较于现有最优的基于注意力机制的联合信源信道语义编码方法, WWIT-SC取得了最高9.8%的PSNR增益。
2020, 42(11): 2805-2812.
doi: 10.11999/JEIT190604
刊出日期:2020-11-16
Mask R-CNN是现阶段实例分割相对成熟的方法,针对Mask R-CNN算法当中还存在的分割边界精度以及对于模糊图片鲁棒性较差等问题,该文提出一种基于改进的Mask R-CNN实例分割方法。该方法首先提出在Mask分支上使用卷积化条件随机场(ConvCRF)来优化Mask分支对于候选区域进一步分割,并使用FCN-ConvCRF分支来代替原有分支;之后提出新锚点大小和IOU标准,使得RPN候选框能够涵盖所有实例区域;最后使用一种添加部分经过转换网络转换的数据进行训练的方法。总的mAP值与原算法相比提升了3%,并且分割边界精确度和鲁棒性都有一定提高。
1998, 20(6): 799-805.
刊出日期:1998-11-19
本文介绍了一个能实时解码基于MPEG-2的高清晰度电视(HDTV)编码流的视频解码器的设计方案及其实现。在设计中采用大量FPGA以及能实现高速处理的并行处理技术和流水线工作方式,并研究了由并行处理而导致的运动补偿越界等特殊问题的解决途径。论文阐明了解码器的总体结构和各主要电路的组成以及整个解码过程的具体实现。
2022, 44(11): 3748-3756.
doi: 10.11999/JEIT220267
刊出日期:2022-11-14
边缘计算已经成为物联网(IOT)的有效解决方案,微服务模型将物联网应用程序划分为一组松散耦合、相互依赖的细粒度微服务。由于边缘节点资源有限,并发请求争夺容器实例,如何在移动边缘计算环境下为复杂工作流应用的并发请求生成合适的微服务执行方案是一个需要解决的重要问题。为此,该文首先建立了基于容器的微服务选择架构,并构建了服务时延模型和网络资源消耗模型,以减少平均延迟和网络消耗。其次,提出一种基于优先级机制和改进蚁群的微服务选择算法(MS-PAC),利用任务截止时间优先分配紧急任务以保证延迟,并利用蚁群算法的信息素机制寻找全局最优解。实验表明,该算法能有效地降低平均时延和网络消耗。
2000, 22(6): 1038-1040.
刊出日期:2000-11-19
本文着重分析HDTV视频解码器中系统控制单元的各关键技术,并给出了一套相应的硬件实现方案。
2021, 43(9): 2617-2623.
doi: 10.11999/JEIT200231
刊出日期:2021-09-16
在软件定义网络中,为了实现各种网络性能优化目标,控制面需要频繁的对数据面进行更新。然而,由于数据面的异步性,不合理的更新将严重降低网络性能。针对此问题,该文提出一种快速和一致的流更新策略(FCFU)。该策略通过流分段减弱其原有的强依赖关系,使能并行更新,通过分析子流段与多个资源间的依赖关系得到总更新轮数较少的更新安排,最后基于延时队列完成一致性流更新。实验结果表明,与现有的流更新算法相比,该策略能够缩短流更新总时间达20.6%,同时保证了更新期间无拥塞和包乱序等问题的发生。
2022, 44(5): 1694-1703.
doi: 10.11999/JEIT210389
刊出日期:2022-05-25
高分辨率遥感图像变化检测是了解地表变化的关键,是遥感图像处理领域的一个重要分支。现有很多基于深度学习的变化检测方法,取得了良好的效果,但是不易获得高分辨率遥感图像中的结构细节且检测精度有待提高。因此,该文提出融合了边缘变化信息和通道注意力模块的网络框架(EANet),分为边缘结构变化信息检测、深度特征提取和变化区域判别3个模块。首先,为了得到双时相图像的边缘变化信息,对其进行边缘检测得到边缘图,并将边缘图相减得到边缘差异图;其次,考虑到高分辨率遥感图像精细的图像细节和复杂的纹理特征,为了充分提取单个图像的深度特征,构建基于VGG-16网络的3支路模型,分别提取双时相图像和边缘差异图的深度特征;最后,为了提高检测精度,提出将通道注意力机制嵌入到模型中,以关注信息量大的通道特征来更好地进行变化区域的判别。实验结果表明,无论从视觉解释或精度衡量上看,提出算法与目前已有的一些方法相比,具有一定的优越性。
- 首页
- 上一页
- 1
- 2
- 3
- 4
- 5
- 下一页
- 末页
- 共:1349页