高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边缘增强引导滤波的光场全聚焦图像融合

武迎春 王玉梅 王安红 赵贤凌

武迎春, 王玉梅, 王安红, 赵贤凌. 基于边缘增强引导滤波的光场全聚焦图像融合[J]. 电子与信息学报, 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723
引用本文: 武迎春, 王玉梅, 王安红, 赵贤凌. 基于边缘增强引导滤波的光场全聚焦图像融合[J]. 电子与信息学报, 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723
Yingchun WU, Yumei WANG, Anhong WANG, Xianling ZHAO. Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723
Citation: Yingchun WU, Yumei WANG, Anhong WANG, Xianling ZHAO. Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293-2301. doi: 10.11999/JEIT190723

基于边缘增强引导滤波的光场全聚焦图像融合

doi: 10.11999/JEIT190723
基金项目: 国家自然科学基金(61601318),山西省青年科技研究基金(201601D021078),山西省重点学科建设经费,山西省互联网+3D打印协同创新中心,山西省1331工程重点创新团队,山西省科技创新团队(201705D131025),太原科技大学博士启动基金(20132023),国家留学基金
详细信息
    作者简介:

    武迎春:女,1984年生,副教授,研究方向为光场信息获取与处理、光学3维传感

    王玉梅:女,1995年生,硕士生,研究方向为光信息获取与处理

    王安红:女,1972年生,教授,研究方向为视频通信、图像识别、3D数据分析理解

    赵贤凌:女,1978年生,讲师,研究方向为光场信息获取与处理、光学3维传感

    通讯作者:

    王玉梅 1954569241@qq.com

  • 中图分类号: TN911.73

Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering

Funds: The National Natural Science Foundation of China (61601318), The Shanxi Science Foundation of Applied Foundational Research (201601D021078), The Fund of Shanxi Key Subjects Construction, The Collaborative Innovation Center of Internet+3D Printing in Shanxi Province, The Key Innovation Team of Shanxi 1331 Project, The Scientific and Technological Innovation Team of Shanxi Province (201705D131025), The Youth Foundation of Taiyuan University of Science and Technology (20132023), The Foundation of China Scholarship Council
  • 摘要: 受光场相机微透镜几何标定精度的影响,4D光场在角度方向上的解码误差会造成积分后的重聚焦图像边缘信息损失,从而降低全聚焦图像融合的精度。该文提出一种基于边缘增强引导滤波的光场全聚焦图像融合算法,通过对光场数字重聚焦得到的多幅重聚焦图像进行多尺度分解、特征层决策图引导滤波优化来获得最终全聚焦图像。与传统融合算法相比,该方法对4D光场标定误差带来的边缘信息损失进行了补偿,在重聚焦图像多尺度分解过程中增加了边缘层的提取来实现图像高频信息增强,并建立多尺度图像评价模型实现边缘层引导滤波参数优化,可获得更高质量的光场全聚焦图像。实验结果表明,在不明显降低融合图像与原始图像相似性的前提下,该方法可有效提高全聚焦图像的边缘强度和感知清晰度。
  • 图  1  光场数字重聚焦几何模型

    图  2  2D光场原图的解码及积分

    图  3  边缘增强引导滤波算法流程

    图  4  边缘增强引导滤波的参数优化

    图  5  光场原图及重聚焦图像

    图  6  特征层分解

    图  7  初步决策图的获取

    图  8  初步融合决策图的优化

    图  9  光场全聚焦图像融合

    图  10  Cup图像融合实验结果对比

    表  1  Flower图像不同融合算法性能评价指标比较

    FlowerIEEIFMIPSI
    PCA7.702734.89080.69030.1806
    WT7.717839.47880.63430.1973
    Laplace7.696539.35160.73170.1867
    BF7.692939.01810.75210.1873
    GFF7.708138.61640.73330.1860
    G-GRW7.704738.82650.74350.1851
    DSIFT7.705439.45550.74940.1921
    本文7.709940.33530.64820.2330
    下载: 导出CSV

    表  2  Cup图像不同融合算法性能评价指标比较

    CupIEEIFMIPSI
    PCA7.636639.73680.61450.1991
    WT7.645347.26130.56090.2768
    Laplace7.617246.14450.68910.2473
    BF7.619145.97570.69760.2478
    GFF7.636545.64230.69160.2400
    G-GRW7.636645.72790.69760.2467
    DSIFT7.636645.81040.69840.2474
    本文7.636647.29420.63920.2857
    下载: 导出CSV

    表  3  Runner图像不同融合算法性能评价指标比较

    RunnerIEEIFMIPSI
    PCA7.458167.76720.73630.2844
    WT7.467376.19060.72860.3307
    Laplace7.466475.91680.77740.3260
    BF7.460674.42690.78340.3291
    GFF7.465374.47180.78350.3157
    G-GRW7.465474.48980.82850.3191
    DSIFT7.466474.98580.82930.3247
    本文7.472377.54820.76100.3497
    下载: 导出CSV
  • LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191–207. doi: 10.1016/j.inffus.2016.12.001
    WU Gaochang, MASIA B, JARABO A, et al. Light field image processing: An overview[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7): 926–954. doi: 10.1109/JSTSP.2017.2747126
    GOSHTASBY A A and NIKOLOV S. Image fusion: Advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114–118. doi: 10.1016/j.inffus.2006.04.001
    刘帆, 裴晓鹏, 张静, 等. 基于优化字典学习的遥感图像融合方法[J]. 电子与信息学报, 2018, 40(12): 2804–2811. doi: 10.11999/JEIT180263

    LIU Fan, PEI Xiaopeng, ZHANG Jing, et al. Remote sensing image fusion based on optimized dictionary learning[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2804–2811. doi: 10.11999/JEIT180263
    谢颖贤, 武迎春, 王玉梅, 等. 基于小波域清晰度评价的光场全聚焦图像融合[J]. 北京航空航天大学学报, 2019, 45(9): 1848–1854. doi: 10.13700/j.bh.1001-5965.2018.0739

    XIE Yingxian, WU Yingchun, WANG Yumei, et al. Light field all-in-focus image fusion based on wavelet domain sharpness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1848–1854. doi: 10.13700/j.bh.1001-5965.2018.0739
    肖斌, 唐翰, 徐韵秋, 等. 基于Hess矩阵的多聚焦图像融合方法[J]. 电子与信息学报, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497

    XIAO Bin, TANG Han, XU Yunqiu, et al. Multi-focus image fusion based on Hess matrix[J]. Journal of Electronics &Information Technology, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497
    ZHANG Yu, BAI Xiangzhi, and WANG Tao. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81–101. doi: 10.1016/j.inffus.2016.09.006
    SUN Jianguo, HAN Qilong, KOU Liang, et al. Multi-focus image fusion algorithm based on Laplacian pyramids[J]. Journal of the Optical Society of America A, 2018, 35(3): 480–490. doi: 10.1364/JOSAA.35.000480
    WAN Tao, ZHU Chenchen, and QIN Zengchang. Multifocus image fusion based on robust principal component analysis[J]. Pattern Recognition Letters, 2013, 34(9): 1001–1008. doi: 10.1016/j.patrec.2013.03.003
    LIU Yu, LIU Shuping, and WANG Zengfu. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139–155. doi: 10.1016/j.inffus.2014.05.004
    LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864–2875. doi: 10.1109/TIP.2013.2244222
    MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Multi-focus image fusion based on multi-scale focus measures and generalized random walk[C]. The 36th Chinese Control Conference, Dalian, China, 2017: 5464–5468. doi: 10.23919/ChiCC.2017.8028223.
    NG R, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[R]. Stanford Tech Report CTSR 2005-02, 2005.
    SOTAK JR G E and BOYER K L. The laplacian-of-gaussian kernel: A formal analysis and design procedure for fast, accurate convolution and full-frame output[J]. Computer Vision, Graphics, and Image Processing, 1989, 48(2): 147–189. doi: 10.1016/s0734-189x(89)80036-2
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213
    YOON Y, JEON H G, YOO D, et al. Light-field image super-resolution using convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(6): 848–852. doi: 10.1109/LSP.2017.2669333
    SCHMIDT M, LE ROUX N, and BACH F. Minimizing finite sums with the stochastic average gradient[J]. Mathematical Programming, 2017, 162(1/2): 83–112. doi: 10.1007/s10107-016-1030-6
    LIU Zheng, BLASCH E, XUE Zhiyun, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 94–109. doi: 10.1109/tpami.2011.109
    JUNEJA M and SANDHU P S. Performance evaluation of edge detection techniques for images in spatial domain[J]. International Journal of Computer Theory and Engineering, 2009, 1(5): 614–621. doi: 10.7763/IJCTE.2009.V1.100
    HAGHIGHAT M and RAZIAN M A. Fast-FMI: Non-reference image fusion metric[C]. The 8th IEEE International Conference on Application of Information and Communication Technologies, Astana, Kazakhstan, 2014: 1–3. doi: 10.1109/ICAICT.2014.7036000.
    FEICHTENHOFER C, FASSOLD H, and SCHALLAUER P. A perceptual image sharpness metric based on local edge gradient analysis[J]. IEEE Signal Processing Letters, 2013, 20(4): 379–382. doi: 10.1109/LSP.2013.2248711
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1627
  • HTML全文浏览量:  589
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-17
  • 修回日期:  2020-07-13
  • 网络出版日期:  2020-07-22
  • 刊出日期:  2020-09-27

目录

    /

    返回文章
    返回