高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩散模型与边缘信息引导的单光子图像重建算法

张丹 练秋生 杨郁池

张丹, 练秋生, 杨郁池. 基于扩散模型与边缘信息引导的单光子图像重建算法[J]. 电子与信息学报. doi: 10.11999/JEIT241063
引用本文: 张丹, 练秋生, 杨郁池. 基于扩散模型与边缘信息引导的单光子图像重建算法[J]. 电子与信息学报. doi: 10.11999/JEIT241063
ZHANG Dan, LIAN Qiusheng, YANG Yuchi. Diffusion Model and Edge Information Guided Single-photon Image Reconstruction Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241063
Citation: ZHANG Dan, LIAN Qiusheng, YANG Yuchi. Diffusion Model and Edge Information Guided Single-photon Image Reconstruction Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241063

基于扩散模型与边缘信息引导的单光子图像重建算法

doi: 10.11999/JEIT241063
基金项目: 河北省自然科学基金(F2022203030)
详细信息
    作者简介:

    张丹:女,讲师,研究方向为深度学习、单光子成像及压缩感知

    练秋生:男,教授,研究方向为深度学习、单光子成像、压缩感知及相位恢复

    杨郁池:女,讲师,研究方向为深度学习、相位恢复及稀疏表示

    通讯作者:

    练秋生 lianqs@ysu.edu.cn

  • 中图分类号: TN911.73

Diffusion Model and Edge Information Guided Single-photon Image Reconstruction Algorithm

Funds: Hebei Natural Science Foundation (F2022203030)
  • 摘要: 在量子图像传感器(QIS)搭建的单光子成像系统中,场景信息蕴含于QIS输出的二值量化数据中,从二值比特流重建原始图像为极度不适定问题。针对现有重建算法在低过采样率重建质量低,对读出噪声敏感的问题,该文提出一种基于扩散模型和边缘信息引导的QIS图像重建算法,以实现快速高质量重建。该算法将测量子空间约束引入无条件的扩散模型反向扩散过程以满足数据一致性和自然图像数据分布的要求,最大似然估计算法重建图像的边缘轮廓成分作为辅助信息引导采样,在减少采样步数的同时提升重建质量。该算法在多个通用数据集上进行测试,并与典型的QIS图像重建算法和基于扩散模型的方法进行比较,实验结果表明,该算法有效地改善了图像重建质量,且对读出噪声具有较强的鲁棒性。
  • 图  1  EGDM算法采样过程示意图

    图  2  采样步数T对PSNR值的影响

    图  3  跳跃步数$ \delta $对PSNR和SSIM值的影响

    图  4  停止测量子空间投影步数$\mu $对PSNR值的影响

    图  5  停止加入测量数据约束步数$\mu $对重建图像视觉效果的影响

    图  6  各算法在K=4时重建Set10数据集中“Lena”的结果对比

    图  7  各算法在K=6时重建BSD68数据集中“Test067”的结果对比

    图  8  各方法在真实 QIS 视频数据(帧)上的重建视觉结果对比

    图  9  各算法在不同K=8, σ=0.3 e- r.m.s.时重建Set10数据集中“Hill”的结果对比

    图  10  各算法在不同K=10, σ=0.4 e r.m.s.时重建Set10数据集中“Barbara”的结果对比

    1  EGDM算法求解流程

     输入:二值测量值B,无条件预训练扩散模型$ {{\boldsymbol{\varepsilon}} _\theta } $,采样步数T
     初始化:初始采样图像$ {{\boldsymbol{x}}_T} \sim \mathcal{N}\left( {0,{\boldsymbol{I}}} \right) $,t=T,参数:τ, $ {\gamma _t} $,
     $\lambda $, $\delta,\mu $
      while t≥1:
       $ {{\boldsymbol{x}}_{0{|t}}} = \dfrac{1}{{\sqrt {{{{\bar \alpha }}_{t}}} }}\left( {{{\boldsymbol{x}}_{t}} - \sqrt {1 - {{{\bar \alpha }}_{t}}} {{{\boldsymbol{\varepsilon}} }_{\theta }}\left( {{{\boldsymbol{x}}_{t}},{t}} \right)} \right) $//利用预训练扩散模
       型从xt预测原始图像x0|t
       if t≥$\mu $:
        $ {\hat {\boldsymbol{x}}_{0{|t}}} = {\mathcal{H}_{{\lambda ,}{{\gamma }_{t}}}}\left( {{{\boldsymbol{x}}_{0{|t}}},{{\boldsymbol{x}}_{{\mathrm{MLE}}}},{\boldsymbol{B}}} \right) $//融合边缘信息并向测量
        子空间投影
       else:
        $ {\hat {\boldsymbol{x}}_{0{|t}}} = {{\boldsymbol{x}}_{0{|t}}} $//停止向测量子空间投影
       end if
       $ {{{\boldsymbol{\varepsilon}}}^{\prime}_{t}} = \dfrac{1}{{\sqrt {1 - {{{\bar \alpha }}_{t}}} }}\left( {{{\boldsymbol{x}}_{t}} - \sqrt {{{{\bar \alpha }}_{t}}} {{\hat {\boldsymbol{x}}}_{0|t}}} \right) $//计算隐变量xt中的有效
       预测噪声
       $ {\boldsymbol{\varepsilon}} \sim \mathcal{N}\left( {0,{\boldsymbol{I}}} \right) $
       if t=T:
        $ {{\boldsymbol{x}}_{t{ - }{\delta }}} = \sqrt {{{{\bar \alpha }}_{{t - }{\delta }}}} {\hat {\boldsymbol{x}}_{0{|t}}} + \sqrt {1 - {{{\bar \alpha }}_{{t - }{\delta }}}} [{\tau }{\varepsilon '_{t}} + (1 - {\tau })\varepsilon ] $//
        跳跃采样
        t = tδ
       else:
        $ {{\boldsymbol{x}}_{{t - }1}} = \sqrt {{{{\bar \alpha }}_{{t - }1}}} {\hat {\boldsymbol{x}}_{0{|t}}} + \sqrt {1 - {{{\bar \alpha }}_{{t} - 1}}} [\tau {{\boldsymbol{\varepsilon}} '_{t}} + (1 - {\tau }){\boldsymbol{\varepsilon}} ] $//反
        向扩散获得xt–1
        t = t–1
       end if
      end while
     输出:重建图像$ {{\boldsymbol x}_0} $
    下载: 导出CSV

    表  1  有/无引入边缘信息、测量子空间投影对算法所需迭代次数/平均PSNR (dB)/SSIM的影响

    方法K=4K=6K=8K=10
    w/o EG100/26.56/0.860 1100/28.95/0.907 4100/30.29/0.928 2100/31.23/0.939 6
    w/o MP95/25.67/0.838 885/27.08/0.873 275/28.05/0.892 775/28.77/0.906 9
    w/ EG&MP85/27.17/0.872 260/29.10/0.909 750/30.43/0.929 240/31.45/0.941 8
    下载: 导出CSV

    表  2  不同QIS重建算法在不同数据集下重建PSNR (dB)/SSIM对比

    数据集 K MLE ADMM-TV PnP-ADMM PnP-RealSN TFPnP DPS DiffPIR EGDM
    Set10 4 14.49/0.214 8 24.25/0.648 0 25.83/0.722 5 25.43/0.815 4 24.84/0.733 2 24.01/0.768 9 26.40/0.854 2 27.17/0.872 2
    6 17.62/0.323 9 26.17/0.717 9 28.47/0.813 8 28.18/0.885 7 27.65/0.796 5 27.97/0.889 5 28.40/0.894 6 29.10/0.909 7
    8 19.98/0.415 5 27.20/0.736 4 29.72/0.845 1 29.82/0.916 1 29.70/0.854 0 29.71/0.919 3 29.69/0.917 4 30.43/0.929 2
    10 21.88/0.491 0 27.93/0.747 2 30.51/0.863 9 30.48/0.925 0 31.29/0.894 2 29.99/0.919 7 30.72/0.931 3 31.45/0.941 8
    BSD68 4 15.14/0.216 7 24.39/0.634 3 25.12/0.652 6 25.19/0.790 4 24.27/0.694 0 24.02/0.785 9 25.83/0.819 0 26.25/0.839 2
    6 18.41/0.334 9 26.06/0.689 3 27.83/0.776 4 27.69/0.863 4 27.19/0.774 6 27.41/0.871 7 27.74/0.869 2 28.34/0.889 6
    8 20.80/0.432 4 27.11/0.715 8 29.11/0.820 1 29.20/0.895 1 29.26/0.840 7 28.29/0.892 7 29.05/0.898 1 29.70/0.914 0
    10 22.68/0.511 6 27.89/0.733 1 29.84/0.838 4 29.75/0.903 6 30.82/0.879 6 29.18/0.902 8 30.03/0.915 2 30.72/0.929 2
    下载: 导出CSV

    表  3  不同QIS重建算法在不同噪声强度下重建PSNR(dB)/MSE对比

    $\sigma $ K MLE ADMM-TV PnP-ADMM PnP-RealSN TFPnP DPS DiffPIR EGDM
    0.3 4 14.16/0.038 4 24.29/0.004 4 23.90/0.004 4 24.95/0.003 7 24.51/0.003 9 24.85/0.003 5 26.29/0.002 6 26.76/0.002 3
    6 17.16/0.019 3 26.07/0.002 9 25.45/0.003 1 27.56/0.002 0 27.10/0.002 2 26.67/0.002 4 27.93/0.001 7 28.43/0.001 6
    8 19.38/0.011 6 27.11/0.002 1 26.72/0.002 3 29.13/0.001 3 29.17/0.001 8 28.37/0.001 6 28.91/0.001 4 29.50/0.001 2
    10 21.11/0.007 8 27.73/0.001 8 27.49/0.001 9 29.92/0.001 1 30.75/0.001 0 29.34/0.001 2 29.86/0.001 1 30.39/0.001 0
    0.4 4 13.59/0.043 8 23.29/0.005 4 22.17/0.006 4 24.06/0.004 4 23.74/0.004 5 23.18/0.005 0 25.07/0.003 3 25.71/0.002 9
    6 16.24/0.023 8 24.95/0.003 6 23.12/0.005 1 25.90/0.002 8 24.37/0.003 7 24.64/0.003 6 26.23/0.002 5 26.73/0.002 2
    8 18.11/0.015 5 25.87/0.002 9 25.34/0.003 1 26.92/0.002 1 25.37/0.002 9 25.92/0.002 7 26.90/0.002 1 27.43/0.001 9
    10 19.46/0.011 3 26.59/0.002 3 25.86/0.002 7 27.36/0.001 9 25.98/0.002 4 26.79/0.002 2 27.45/0.001 8 27.88/0.001 6
    下载: 导出CSV

    表  4  不同QIS重建算法在K=8时Set10数据集上的平均执行时间 (s)

    算法PnP-RealSNTFPnPDPSDiffPIRw/ SK& MSPw/o SKw/o MSPEGDM
    运行时长65.41.8316.413.812.610.77.66.9
    下载: 导出CSV
  • [1] FOSSUM E R, MA Jiaju, MASOODIAN S, et al. The quanta image sensor: Every photon counts[J]. Sensors, 2016, 16(8): 1260. doi: 10.3390/s16081260.
    [2] GYONGY I, AL ABBAS T, DUTTON N, et al. Object tracking and reconstruction with a quanta image sensor[C]. The International Image Sensor Workshop, Hiroshima, Japan, 2017: 4.
    [3] POLAND S P, KRSTAJIĆ N, MONYPENNY J, et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging[J]. Biomedical Optics Express, 2015, 6(2): 277–296. doi: 10.1364/BOE.6.000277.
    [4] SEITZ P and THEUWISSEN A J P. Single-Photon Imaging[M]. Berlin, Heidelberg: Springer, 2011. doi: 10.1007/978-3-642-18443-7.
    [5] YANG Feng, LU Y M, SBAIZ L, et al. Bits from photons: Oversampled image acquisition using binary Poisson statistics[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1421–1436. doi: 10.1109/TIP.2011.2179306.
    [6] CHAN S H, ELGENDY O A, and WANG Xiran. Images from bits: Non-iterative image reconstruction for quanta image sensors[J]. Sensors, 2016, 16(11): 1961. doi: 10.3390/s16111961.
    [7] YANG Feng, SBAIZ L, CHARBON E, et al. Image reconstruction in the gigavision camera[C]. The 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 2009: 2212–2219. doi: 10.1109/ICCVW.2009.5457554.
    [8] YANG Feng, LU Y M, SBAIZ L, et al. An optimal algorithm for reconstructing images from binary measurements[C]. SPIE 7533, Computational Imaging VIII, San Jose, USA, 2010: 75330K. doi: 10.1117/12.850887.
    [9] CHAN S H and LU Y M. Efficient image reconstruction for gigapixel quantum image sensors[C]. 2014 IEEE Global Conference on Signal and Information Processing, Atlanta, USA, 2014: 312–316. doi: 10.1109/GlobalSIP.2014.7032129.
    [10] CHAN S H, WANG Xiran, and ELGENDY O A. Plug-and-play ADMM for image restoration: Fixed-point convergence and applications[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 84–98. doi: 10.1109/TCI.2016.2629286.
    [11] RYU E, LIU Jialin, WANG Sicheng, et al. Plug-and-play methods provably converge with properly trained denoisers[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 5546–5557.
    [12] WEI Kaixuan, AVILES-RIVERO A, LIANG Jingwei, et al. TFPnP: Tuning-free plug-and-play proximal algorithms with applications to inverse imaging problems[J]. The Journal of Machine Learning Research, 2022, 23(1): 16.
    [13] WANG Xingzheng . Single-photon cameras image reconstruction using vision transformer[C]. 2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence, Taiyuan, China, 2023: 296–300. doi: 10.1109/CCAI57533.2023.10201259.
    [14] 胡铭菲, 左信, 刘建伟. 深度生成模型综述[J]. 自动化学报, 2022, 48(1): 40–74. doi: 10.16383/j.aas.c190866.

    HU Mingfei, ZUO Xin, and LIU Jianwei. Survey on deep generative model[J]. Acta Automatica Sinica, 2022, 48(1): 40–74. doi: 10.16383/j.aas.c190866.
    [15] XIANG Xuezhi, ABDEIN R, LV Ning, et al. InvFlow: Involution and multi-scale interaction for unsupervised learning of optical flow[J]. Pattern Recognition, 2024, 145: 109918. doi: 10.1016/j.patcog.2023.109918.
    [16] 厉行, 樊养余, 郭哲, 等. 基于边缘领域自适应的立体匹配算法[J]. 电子与信息学报, 2024, 46(7): 2970–2980. doi: 10.11999/JEIT231113.

    LI Xing, FAN Yangyu, GUO Zhe, et al. Edge domain adaptation for stereo matching[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2970–2980. doi: 10.11999/JEIT231113.
    [17] LIN Xinmiao, LI Yikang, HSIAO J, et al. Catch missing details: Image reconstruction with frequency augmented variational autoencoder[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 1736–1745. doi: 10.1109/CVPR52729.2023.00173.
    [18] HO J, JAIN A, and ABBEEL P. Denoising diffusion probabilistic models[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 574.
    [19] XIA Bin, ZHANG Yulun, WANG Shiyin, et al. Diffir: Efficient diffusion model for image restoration[C]. Tthe 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 13049–13059. doi: 10.1109/ICCV51070.2023.01204.
    [20] CHUNG H, KIM J, MCCANN M T, et al. Diffusion posterior sampling for general noisy inverse problems[C]. 2023 International Conference on Learning Representations, Kigali, Rwanda, 2023: 1–30.
    [21] FEI Ben, LYU Zhaoyang, PAN Liang, et al. Generative diffusion prior for unified image restoration and enhancement[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 9935–9946. doi: 10.1109/CVPR52729.2023.00958.
    [22] SONG Jiaming, MENG Chenlin, and ERMON S. Denoising diffusion implicit models[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–20.
    [23] SONG Yang, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–36.
    [24] ZHU Yuanzhi, ZHANG Kai, LIANG Jingyun, et al. Denoising diffusion models for plug-and-play image restoration[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, Canada, 2023: 1219–1229. doi: 10.1109/CVPRW59228.2023.00129.
    [25] BYERS R. A bisection method for measuring the distance of a stable matrix to the unstable matrices[J]. SIAM Journal on Scientific and Statistical Computing, 1988, 9(5): 875–881. doi: 10.1137/0909059.
    [26] WANG Yinhuai, YU Jiwen, and ZHANG Jian. Zero-shot image restoration using denoising diffusion null-space model[C]. 2023 International Conference on Learning Representations, Kigali, Rwanda, 2023: 1–31.
    [27] BURRI S, MARUYAMA Y, MICHALET X, et al. Architecture and applications of a high resolution gated SPAD image sensor[J]. Optics Express, 2014, 22(14): 17573–17589. doi: 10.1364/OE.22.017573.
    [28] DHARIWAL P and NICHOL A. Diffusion models beat GANs on image synthesis[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 672.
    [29] CHI Yiheng, GNANASAMBANDAM A, KOLTUN V, et al. Dynamic low-light imaging with quanta image sensors[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 122–138. doi: 10.1007/978-3-030-58589-1_8.
    [30] GNANASAMBANDAM A and CHAN S H. Image classification in the dark using quanta image sensors[C]. 2020 European Conference on Computer Vision, Glasgow, UK, 2020: 484–501. doi: 10.1007/978-3-030-58598-3_29.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  15
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-03-31
  • 网络出版日期:  2025-04-23

目录

    /

    返回文章
    返回