2016, 38(7): 1631-1637.
doi: 10.11999/JEIT151050
Abstract:
In consideration of the contradiction between the positioning accuracy and computational efficiency of the previous indoor positioning algorithm, a double stage positioning algorithm (LANDMARC- SROMP CS) using LANDMARC combined with Compressive Sensing based on the Regularized Orthogonal Matching Pursuit optimized by the Simulated annealing algorithm (SROMP) is put forward. First of all, LANDMARC location algorithm is used to lock the target area quickly; then in the locked area, Compressive Sensing (CS) theory is introduced to realize the target position estimation. In this part, firstly, the virtual reference tags are constructed according to the scale of the locked area; then, the measurement matrix is constructed by the received signal strength data of the virtual reference tags, and the signal strength data are calculated by the indoor propagation loss model which is trained by a new relevance vector machine algorithm based on mixed kernel functions. At last, the SROMP compressive sensing reconstruction algorithm is used to get the position index matrix, and the position information of the target also can be obtained through a simple weighted average calculation. The experimental results show that the average positioning error of the proposed algorithm is only 0.6445 m, and the computation efficiency of the proposed algorithm is relatively high, which can meet the indoor positioning requirements well.