Advanced Search
Volume 38 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, OU Jianping, ZHANG Jun. Multi-view Polarization HRRP Target Recognition Based on Joint Sparsity[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1724-1730. doi: 10.11999/JEIT151019
Citation: LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, OU Jianping, ZHANG Jun. Multi-view Polarization HRRP Target Recognition Based on Joint Sparsity[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1724-1730. doi: 10.11999/JEIT151019

Multi-view Polarization HRRP Target Recognition Based on Joint Sparsity

doi: 10.11999/JEIT151019
Funds:

The National Natural Science Foundation of China (61471370, 61401479)

  • Received Date: 2015-09-09
  • Rev Recd Date: 2016-02-25
  • Publish Date: 2016-07-19
  • The issue of automatically recognizing a target from its Full-Polarization High Range Resolution Profiles (FPHRRPs) with consecutive observations is considered. The prior information contained in a multi-view FPHRRP sample is hierarchical: all the entries contained in the sample are originated from the same target; the entries within a single view are associated with the same target pose; the multiple views under the same polarization mode are correlated. To utilize efficiently the prior information for target recognition, a novel joint sparse representation based multi-view FPHRRPs target recognition method is proposed. The presented method assumes all the entries within a multi-view FPHRRP sample share a common sparsity pattern in their sparse representation vectors at atom-level, which has the advantage of exploiting the aforementioned information to enhance recognition performance. Experiments are conducted using a synthetic vehicle target dataset. The results show that the proposed method achieves promising recognition accuracy and it is robust with respect to noisy observations.
  • loading
  • LI Hsuehjyh and LANE Rongyuan. Utilization of multiple polarization data for aerospace target identification[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(12): 1436-1441. doi: 10.1109/8.475934.
    张瑞, 牛威, 寇鹏. 基于样本紧密度的雷达高分辨距离像识别方法研究[J]. 电子与信息学报, 2014, 36(3): 529-536. doi: 10.3724/SP.J.1146.2013.00616.
    ZHANG Rui, NIU Wei, and KOU Peng. Radar high resolution range profiles recognition based on the affinity[J]. Journal of Electronics Information Technology, 2014, 36(3): 529-536. doi: 10.3724/SP.J.1146.2013.00616.
    WONG S K. High range resolution profiles as motion- Invariant features for moving ground targets identification in SAR-based automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1017-1039. doi: 10.1109/TAES.2009.525 9180.
    SHAW K, PAUL A S, and WILLAMS R. Eigen-template- based HRR-ATR with multi-look and time-recursion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2369-2385. doi: 10.1109/TAES.2013.6621822.
    冯博, 陈渤, 王鹏辉, 等. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227.
    FENG Bo, CHEN Bo, WANG Penghui, et al. Radar high resolution range profile target recognition algorithm via stable dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227.
    MA Xiaoshuang, SHEN Huangfeng, YANG Jie, et al. Polarimetric-spatial classification of SAR images based on the fusion of multiple classifiers[J]. IEEE Journal of Selected Topic in Applied Earth Observation and Remote Sensing, 2014, 7(3): 961-971. doi: 10.1109/JSARS2013.2265331.
    ZHANG Hongsheng, LIN Hui, and LI Yu. Impacts of feature normalization on optical and SAR data fusion for land use/land cover classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1061-1065. doi: 10.1109/LGRS.2014.2377722.
    CARMINE C, LUCA P, IAN P, et al. Pseudo-Zernike-based multi-pass automatic target recognition from multi-channel synthetic aperture radar[J]. IET Radar, Sonar Navigation, 2015, 9(4): 457-466. doi: 10.1049/iet-rsn.2014.0296.
    张玉玺, 王晓丹, 姚旭, 等. 基于H/A/a分解的全极化HRRP目标识别方法[J]. 系统工程与电子技术, 2013, 35(12): 2501-2507. doi: 10.3969/j.issn.1001-506X.2013.12.10.
    ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. Target recognition of fully polarimetric HRRP based on H/A/a decomposition[J]. Systems Engineering and Electronics, 2013, 35(12): 2501-2507. doi: 10.3969/j.issn.1001-506X.2013.12.10.
    张玉玺, 王晓丹, 姚旭, 等. 基于复数全极化HRRP的雷达目标识别[J]. 系统工程与电子技术, 2014, 36(2): 260-265. doi: 10.3969/j.issn.1001-506X.2014.02.10.
    ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. Radar target recognition based on complex fully polarimetric HRRP[J]. Systems Engineering and Electronics, 2014, 36(2): 260-265. doi: 10.3969 /j.issn.1001-506X.2014.02.10.
    LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, et al. Multi-view radar target recognition based on multitask compressive sensing[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(14): 1917-1934. doi: 10.1080/ 09205071.2015.1067647.
    CUI Minshan, SAURABH P, MAJID M, et al. Decision fusion of textural features derived from polarimetric data for levee assessment[J]. IEEE Journal of Selected Topic in Applied Earth Observation and Remote Sensing, 2012, 5(3): 970-976. doi: 10.1109/JSTARS.2012. 2195713.
    DENNIS M B and PAUL G. A target identification comparison of Bayesian and Dempster-Shafer multisensor fusion[J]. IEEE Transactions on Systems, Man, and CyberneticsPart A: Systems and Humans, 1997, 27(5): 569-577. doi: 10.1109/3468.618256.
    DONG Ganggang and KUANG Gangyao. Target recognition via information aggregation through Dempster-Shafers evidence theory[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1247-1251. doi: 10.1109/LGRS.2015.- 2390914.
    XIAO Jiangjian and SHAH M. Automatic target recognition using multi-view morphing[C]. Proceedings of SPIE, Automatic Target Recognition XIV, Orlando, FL, United States, 2004: 391-399. doi: 10.1117/12.540892.
    YUAN Xiaotong, LIU Xiaobai, and Yan Shuicheng. Visual classification with multitask joint sparse representation[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4349-4360. doi: 10.1109/TIP.2012.2205006.
    ZHANG Haichao, NASSER M N, ZHANG Yanning, et al. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481-2497. doi: 10.1109/TAES.2012.6237604.
    TROPP J A, GILBERT A C, and STRAUSS M J. Algorithms for simultaneous sparse approximation Part I: greedy pursuit[J]. EURASIP Journal on Applied Signal Processing, 2006, 86(3): 589-602. doi: 10.1016/j.sigpro.2005.05.030.
    RAKOTOMAMONJY A. Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms[J]. Signal Processing, 2011, 91(7): 1505-1526. doi: 10.1016/j.sigpro.2011.01.012.
    JOHN W, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi: 10.1109/TPAMI.2008.79.
    CEDRIC L, FRISON P L, CELINE T, et al. Support vector machine for multifrequency SAR polarimetric data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12), 4143-4152. doi: 10.1109/TGRS. 2009.2023908.
    ZHANG Haichao, NASSER M N, ZHANG Yanning, et al. Joint dynamic sparse representation for multi-view face recognition[J]. Pattern Recognition, 2012, 45(4), 1290-1298. doi: 10.1016/j.patcog.2011.09.009.
    Kontt E F. A progression of high frequency RCS prediction techniques[J]. Proceedings of the IEEE, 1985, 73(2): 252-264. doi: 10.1109/PROC.1985.13137.
    LIU Shengqi, ZHAN Ronghui, ZHANG Jun, et al. Radar automatic target recognition based on sequential vanishing component analysis[J]. Progress In Electromagnetics Research, 2014, 145: 241-250. doi: 10.2528/PIER14011608.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1481) PDF downloads(491) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return