Advanced Search
Volume 38 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
ZHAO Xuejian, SUN Zhixin, YUAN Yuan. An Efficient Association Rule Mining Algorithm Based on Prejudging and Screening[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1654-1659. doi: 10.11999/JEIT151107
Citation: ZHAO Xuejian, SUN Zhixin, YUAN Yuan. An Efficient Association Rule Mining Algorithm Based on Prejudging and Screening[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1654-1659. doi: 10.11999/JEIT151107

An Efficient Association Rule Mining Algorithm Based on Prejudging and Screening

doi: 10.11999/JEIT151107
Funds:

The National Natural Science Foundation of China (61373135, 61401225, 61502252, 61201160), Natural Science Foundation of Jiangsu Province of China (BK20140883, BK20140894, BK20131377), China Postdoctoral Science Foundation Funded Project (2015M581844), Jiangsu Planned Projects for Postdoctoral Research Funds (1501125B), NUPTSF (NY214101, NY215147)

  • Received Date: 2015-09-29
  • Rev Recd Date: 2016-02-26
  • Publish Date: 2016-07-19
  • Association rule analysis, as one of the significant means of data mining, plays an important role in discovering the implicit knowledge in massive transaction data. To overcome the inherent defects of the classic Apriori algorithm, this paper proposes Apriori With Prejudging (AWP) algorithm. AWP algorithm adds a pre-judging procedure on the basis of the self-join and pruning progress in Apriori algorithm. It reduces and optimizes the k-frequent item sets using prior probability. In addition, the damping factor and compensating factor are introduced to revise the deviation caused by pre-judging. AWP algorithm simplifies the operation process of mining frequent item sets. Experimental results show that the improvement measures can effectively reduce the number of scanning databases and reduce the running time of the algorithm.
  • loading
  • SINGLA S and MALIK A. Survey on various improved Apriori algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2014, 3(11): 8528-8531. doi: 10.17148/ijarcce.2014.31139.
    MINAL G I and SURYAVANSHI N Y. Association rule mining using improved Apriori algorithm[J]. International Journal of Computer Applications, 2015, 112(4): 37-42.
    RAJESWARI K. Improved Apriori algorithm A comparative study using different objective measures[J]. International Journal of Computer Science and Information Technologies, 2015, 6(3): 3185-3191.
    ACHAR A, LAXMAN S, and SASTRY P S. A unified view of the Apriori-based algorithms for frequent episode discovery[J]. Knowledge Information Systems, 2012, 31(2): 223-250. doi: 10.1007/s10115-011-0408-2.
    李鹏, 于晓洋, 孙渤禹. 基于用户群组行为分析的视频推荐方法研究[J]. 电子与信息学报, 2014, 36(6): 1484-1491. doi: 10.3724/SP.J.1146.2013.01225.
    LI Peng, YU Xiaoyang, and SUN Boyu. Video recommendation method based on group user behavior analysis[J]. Journal of Electronics Information Technology, 2014, 36(6): 1484-1491. doi: 10.3724/SP.J.1146.2013.01225.
    AGRAWAL R and SRIKANT R. Fast algorithms for mining association rules[C]. VLDB94 Proceedings of the 20th International Conference on Very Large Data Bases, San Francisco, CA, USA, 1994: 487- 499.
    YANG Z, TANG W, SHINTEMIROV A, et al. Association rule mining-based dissolved gas analysis for fault diagnosis of power transformers[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2009, 39(6): 597-610. doi: 10.1109/TSMCC.2009.2021989.
    ZHANG F, ZHANG Y, and BAKOS J D. Gpapriori: Gpu-accelerated frequent itemset mining[C]. 2011 IEEE International Conference on Cluster Computing, Austin, TX, USA, 2011: 590-594. doi: 10.1109/CLUSTER.2011.61.
    ANGELINE M D and JAMES S P. Association rule generation using Apriori mend algorithm for students placement[J]. International Journal of Emerging Sciences, 2012, 2(1): 78-86.
    LI N, ZENG L, HE Q, et al. Parallel implementation of Apriori algorithm based on MapReduce[C]. 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel Distributed Computing (SNPD), Kyoto, Japan, 2012: 236-241. doi: 10.1109/ SNPD. 2012.31.
    SULIANTA F, LIONG TH, and ATASTINA I. Mining food industrys multidimensional data to produce association rules using Apriori algorithm as a basis of business strategy[C]. 2013 International Conference of Information and Communication Technology (ICoICT), Bandung, Indonisia, 2013: 176-181. doi: 10.1109/ICoICT.2013.6574569.
    ABAYA S A. Association rule mining based on Apriori algorithm in minimizing candidate generation[J]. International Journal of Scientific Engineering Research, 2012, 3(7): 1-4.
    WANG Feng and LI Yonghua. An improved Apriori algorithm based on the matrix[C]. Proceedings of 2008 International Seminar on Future BioMedical Information Engineering, Wuhan, China, 2008: 152-155. doi: 10.1109/ FBIE.2008.80.
    MAOLEGI M A and ARKOK B. An improved Apriori algorithm for association rules[J]. International Journal on Natural Language Computing, 2014, 3(1): 21-29. doi: 10.5121/ijnlc.2014.3103.
    葛琳, 季新生, 江涛. 基于关联规则的网络信息内容安全事件发现及其Map-Reduce实现[J]. 电子与信息学报, 2014, 36(8): 1831-1837. doi: 10.3724/SP.J.1146.2013.01272.
    GE Lin, JI Xinsheng, and JIANG Tao. Discovery of network information content security incidents based on association rules and its implementation in Map-Reduce[J]. Journal of Electronics Information Technology, 2014, 36(8): 1831-1837. doi: 10.3724/SP.J.1146.2013.01272.
    TANK D M. Improved Apriori algorithm for mining association rules[J]. International Journal of Information Technology and Computer Science, 2014, 6(7): 15-23. doi: 10.5815/ijitcs.2014.07.03.
    RAO S and GUPTA R. Implementing improved algorithm over Apriori data mining association rule algorithm[J]. International Journal of Computer Science and Technology, 2012, 34(3): 489-493.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1453) PDF downloads(483) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return