Advanced Search
Volume 38 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
JIN Yan, LI Shuguang, JI Hongbing. Maximum-likelihood Estimation for Frequency-hopping Parameters by Cauchy Distribution[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1696-1702. doi: 10.11999/JEIT151029
Citation: JIN Yan, LI Shuguang, JI Hongbing. Maximum-likelihood Estimation for Frequency-hopping Parameters by Cauchy Distribution[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1696-1702. doi: 10.11999/JEIT151029

Maximum-likelihood Estimation for Frequency-hopping Parameters by Cauchy Distribution

doi: 10.11999/JEIT151029
Funds:

The National Natural Science Foundation of China (61201286), The Natural Science Foundation of Shaanxi Province of China (2014JM8304), The Fundamental Research Funds for the Central Universities (K5051202013)

  • Received Date: 2015-09-10
  • Rev Recd Date: 2016-01-29
  • Publish Date: 2016-07-19
  • In view that conventional methods for Frequency Hopping (FH) signal parameter estimation suffer from performance degradation in alpha stable noise environment, the Cauchy based maximum likelihood estimation method is introduced in this paper. The FH signal is decomposed into the two-dimensional envelope versus frequency plane, and then a maximum-likelihood function based on Cauchy distribution is established to extract the frequency parameter directly. For the short-time stationarity of FH signals, the maximum-likelihood function is windowed in order to estimate the specific values and sequence of frequency-hopping, after that the hopping timing and the duration can be estimated. Simulation results show that compared with the fractional lower order statistics as well as the Myriad filter based time frequency analysis methods, the proposed method improves the estimation accuracy of FH signal parameters and is robust to the alpha stable distribution noise.
  • loading
  • ZHAO Lifan, WANG Lu, BI Guoan, et al. Robust frequency-hopping spectrum estimation based on sparse bayesian method[J]. IEEE Transactions on Wireless Communications, 2014, 14(2): 781-793.
    ZHONG X, PREMKUMAR A B, and MADHUKUMAR A S. Particle filtering for acoustic source tracking in impulsive noise with alpha-stable process[J]. IEEE Sensors Journal, 2013, 13(2): 589-600.
    CHAVALI V G and DA Silva C R C M. Detection of digital amplitude-phase modulated signals in symmetric alpha-stable noise[J]. IEEE Transactions on Communications, 2012, 60(11): 3365-3375.
    PELEKANAKIS K and CHITRE M. Adaptive sparse channel estimation under symmetric alpha-stable noise[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3183-3195.
    TANG Yong, XIONG Xingzhong, and ZHONG Lili. Time-delay estimation based on fractional lower order statistics[C]. Wireless Communication and Sensor Network (WCSN), Wuhan, 2014: 50-55.
    KATKOVNIK V. Robust M-periodogram[J]. IEEE Transactions on Signal Processing, 1998, 46(11): 3104-3109.
    CHAVALI V G and DA Silva C R C M. Comparison analysis of myriad estimator calculation algorithms[C]. Conference on Embedded Computing, Budva, 2014: 240-243.
    YUE B B, PENG Z M, HE Y M, et al. Impulsive noise suppression using fast myriad filter in seismic signal processing[C]. Proceedings of the the 5th International Conference on Computational and Information Sciences, Shiyan, 2013, 6: 1001-1004.
    赵新明, 金艳, 姬红兵. 稳定分布噪声下基于Merid滤波的跳频信号参数估计[J]. 电子与信息学报, 2014, 36(8): 1878-1883. doi: 10.3724/SP.J.1146.2014.01436.
    ZHAO Xinming, JIN Yan, and JI Hongbing. Parameter estimation of frequency-hopping signals based on Merid filter in stable noise environment[J]. Journal of Electronics Information Technology, 2014, 36(8): 1878-1883. doi: 10.3724/SP.J.1146.2014.01436.
    KURKIN D, ROENKO A, LUKIN V, et al. An adaptive meridian estimator[C]. IEEE Microwaves, Radar and Remote Sensing Symposium, Kiev, 2011: 301-304.
    AALO V A, PEPPAS K P, EFTHYMOGLOU G, et al. Evaluation of average bit error rate for wireless networks with alpha-stable interference[J]. Electronics Letters, 2014, 50(1): 47-49.
    金艳,朱敏,姬红兵. Alpha稳定分布噪声下基于柯西分布的相位键控信号码速率最大似然估计[J]. 电子与信息学报, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
    JIN Yan, ZHU Min, and JI Hongbing. Cauchy distribution based maximum-likelihood estimator for symbol rate of phase shift keying signals in alpha stable noise environment[J]. Journal of Electronics Information Technology, 2015, 37(6): 1323-1329. doi: 10.11999/JEIT141180.
    郭莹. 稳定分布环境下的时延估计新方法研究[D]. [博士论文],大连理工大学, 2009.
    GUO Ying. The study on novel time delay estimation methods based on stable distribution[D]. [Ph.D. dissertation], Dalian University of Technology, 2009.
    GONZALEZ J G and ARCE G R. Optimality of the Myriad filter in practical impulsive noise environments[J]. IEEE Transactions on Signal Processing, 2001, 49(2): 438-441.
    LIM H S, CHUAH T C, and CHUAH H T. On the optimal alpha-k curve of the sample Myriad[J]. IEEE Signal Processing Letters, 2007, 14(8): 545-548.
    BARANIUK R G and JONES D L. A signal-dependent time-frequency representation: optimal kernel design[J]. IEEE Transactions on Signal Processing, 1993, 41(4): 1589-1602.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1968) PDF downloads(528) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return