Advanced Search
Volume 38 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
YU Hongyi, CHENG Biao, HU Yunpeng, SHEN Zhixiang. Adaptive Spectrum Detection Algorithm Based on Spatial Sparsity[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1703-1709. doi: 10.11999/JEIT151030
Citation: YU Hongyi, CHENG Biao, HU Yunpeng, SHEN Zhixiang. Adaptive Spectrum Detection Algorithm Based on Spatial Sparsity[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1703-1709. doi: 10.11999/JEIT151030

Adaptive Spectrum Detection Algorithm Based on Spatial Sparsity

doi: 10.11999/JEIT151030
Funds:

The National Natural Science Foundation of China (61501517)

  • Received Date: 2015-09-10
  • Rev Recd Date: 2016-01-22
  • Publish Date: 2016-07-19
  • The existing spectrum detection method can not take full advantage of angle dimension. To sense the spectrum more comprehensively, the signal model is established based on the sparsity of angle dimension. The reconstruction result can be derived by Sparse Bayesian Learning (SBL) algorithm. By integrating the binary probability hypothesis into iterative procedure of SBL, a decision test combined with adaptive threshold is derived. The proposed pruning step can accept the active components of the model, and transform the sparse recovery into a detection problem for signals from different angles. Therefore, the algorithm can sense the spectrum blindly with constant false-alarm rate as well as estimate the accurate angle of each incident signal. Numerical simulation results verify that adaptive threshold can improve reconstruction accuracy with low computing cost. Moreover, the proposed algorithm can achieve better estimation and detection performance than previous algorithms.
  • loading
  • DIKMESE S, SOFOTASIOS P C, IHALAINEN T, et al. Efficient energy detection methods for spectrum sensing under non-flat spectral characteristics[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(5): 755-770. doi: 10.1109/JSAC.2014.2361074.
    马彬, 方源, 谢显中. 一种主用户随机到达情况下改进的循环平稳特征检测算法[J]. 电子与信息学报, 2015, 37(7): 1531-1537. doi: 10.11999/JEIT141283.
    MA Bin, FANG Yuan, and XIE Xianzhong. Improved cyclostationary spectrum sensing scheme for primary users randomly arriving[J]. Journal of Electronics Information Technology, 2015, 37(7): 1531-1537. doi: 10.11999/JEIT 141283.
    ZHANG Xinzhi, CHAI Rong, and GAO Feifei. Matched filter based spectrum sensing and power level detection for cognitive radio network[C]. IEEE Global Conference on Signal and Information Processing. Atlanta, USA, 2014: 1267-1270.
    WILCOX D, TSAKALAKI E, KORTUN A, et al. On spatial domain cognitive radio using single-radio parasitic antenna arrays[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(3): 571-580. doi: 10.1109/JSAC. 2013.130321.
    赵晓晖, 李晓燕. 认知无线电中基于阵列天线和协方差矩阵的频谱感知算法[J]. 电子与信息学报, 2014, 36(7): 1693-1698. doi: 10.3724/SP.J.1146.2013.01057.
    ZHAO Xiaohui and LI Xiaoyan. Spectrum sensing algorithm in cognitive radio based on array antenna and covariance matrix[J]. Journal of Electronics Information Technology, 2014, 36(7): 1693-1698. doi: 10.3724/SP.J.1146.2013.01057.
    马启明, 王宣银, 杜栓平. 基于频谱幅度起伏特性的微弱信号检测方法研究[J]. 电子与信息学报, 2008, 30(11): 2642-2645.
    MA Qiming, WANG Xuanyin, and DU Shuanping. Research of the method for the weak signal detection based on the amplitude fluctuation property of the frequency spectrum[J]. Journal of Electronics Information Technology, 2008, 30(11): 2642-2645.
    刘畅, SYED S A, 张锐, 等. 基于空间谱的多天线盲频谱感知算法[J]. 通信学报, 2015, 36(4): 119-128. doi: 10.11959/j.issn. 1000-436x.2015087.
    LIU Chang, SYED S A, ZHANG Rui, et al. Spatial spectrum based blind spectrum sensing for multi-antenna cognitive radio system[J]. Journal on Communication, 2015, 36(4): 119-128. doi: 10.11959/j.issn.1000-436x.2015087.
    左加阔, 陶文凤, 包永强, 等. 多跳认知水声通信中的分布式稀疏频谱检测算法[J]. 电子与信息学报, 2013, 35(10): 2359-2364. doi: 10.3724/SP.J.1146.2013.00042.
    ZUO Jiakuo, TAO Wenfeng, BAO Yongqiang, et al. Distributed sparse spectrum detection in multihop cognitive underwater acoustict communication networks[J]. Journal of Electronics Information Technology, 2013, 35(10): 2359-2364. doi: 10.3724/SP.J.1146.2013.00042.
    HUANG Dinhwa, WU Sauhsuan, WU Wenrong, et al. Cooperative radio source positioning and power map reconstruction: a sparse bayesian learning approach[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2318-2332. doi: 10.1109/TVT.2014.2345738.
    LEI Chuan, ZHANG Jun, and GAO Qiang. Detection of unknown and arbitrary sparse signals against noise[J]. IET Signal Processing, 2014, 8(2): 146-157. doi: 10.1049/iet-spr. 2011.0125.
    WACHOWSKI N and AZIMI M R. Detection and classification of nonstationary transient signals using sparse approximations and bayesian networks[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2014, 22(12): 1750-1764. doi: 10.1109/TASLP.2014.2348913.
    PARIS S, MARY D, and FERRARI A. Detection tests using sparse models, with application to hyperspectral data[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1481-1494. doi: 10.1109/TSP.2013.2238533.
    ZHOU Yifeng, YIP P C, and LEUNG H. Tracking the direction-of-arrival of multiple moving targets by passive arrays: algorithm[J]. IEEE Transactions on Signal Processing, 1999, 47(10): 2655-2666.
    WIPF D P and RAO B D. An empirical bayesian strategy for solving the simultaneous sparse approximation problem[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3704-3716. doi: 10.1109/TSP.2007.894265.
    WIPF D P, RAO B D, and NAGARAJAN S. Latent variable Bayesian models for promoting sparsity[J]. IEEE Transactions on Information Theory, 2011, 57(9): 6236-6255. doi: 10.1109/TIT.2011.2162174.
    KELLY E J and FORSYTHE K M. Adaptive detection and parameter estimation for multidimensional signal models[R]. Lexington: Lincoln Lab, 1989.
    TIPPING M E. Sparse bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
    刘寅, 吴顺君, 吴明宇, 等. 基于空域稀疏性的宽带DOA估计[J]. 航空学报, 2012, 33(11): 2028-2038.
    LIU Yin, WU Shunjun, WU Mingyu, et al. Wideband DOA estimation based on spatial sparseness[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2028-2038.
    LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Direction-of-Arrival estimation of wideband signals via covariance matrix sparse representation[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4256-4270. doi: 10.1109/TSP.2011.2159214.
    KAY S M and GABRIEL J R. An invariance property of the generalized likelihood ratio test[J]. IEEE Signal Processing Letters, 2003, 10(12): 352-355. doi: 10.1109/LSP.2003. 818865.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1271) PDF downloads(545) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return