Citation: | LI Lina, MA Jun, LONG Yue, XU Panfeng. Double Stage Indoor Localization Algorithm Based on LANDMARC and Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050 |
YANG Ting and ZHU Liping. A review of modern indoor localization systems[C]. Proceedings of the 2nd National Conference on Information Technology and Computer Science, Shanghai, 2015: 10-11.
|
WU Ling, and HUANG Liya. Improvement of location methods based on RFID[J]. The Journal of China Universities of Posts and Telecommunications, 2013, 20(6): 36-41.
|
LI Chengtie, WANG Jinkuan, and HAN Yinghua. An efficient compressed sensing-based cross-layer congestion control scheme for wireless sensor networks[C]. Proceedings of IEEE 26th Chinese Control and Decision conference, Shanghai, 2014: 5-6.
|
何风行, 余志军, 刘海涛. 基于压缩感知的无线传感器网络多目标定位算法[J]. 电子与信息学报, 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146.2011.00405.
|
HE Fenghang, YU Zhijun, and LIU Haitao. Multiple target localization via compressed sensing in wireless sensor networks[J]. Journal of Electronics Information Technology, 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146.2011.00405.
|
MIR Y U, KOPPARAPU V R, and YAND Dongkai. An enhanced K-nearest neighbor algorithm for indoor positioning systems in a WLAN[C]. Proceedings of 2014 IEEE Computers, Communications and IT Applications Conference (ComComAp), Beijing, 2014: 5-8.
|
ZHANG Rongbiao, GUO Jianguang, CHU Fuhuan, et al. Environmental-adaptive indoor radio path loss model for wireless sensor networks localization[J]. AEU - International Journal of Electronics and Communications, 2011, 65(12): 1023-1031.
|
MIHALIS A N, HATICE G, and MAJA P. Output- associative RVM regression for dimensional and continuous emotion prediction[J]. Image and Vision Computing, 2012, 30(3): 186-196.
|
赵春晖, 张燚, 王玉磊. 基于小波核主成分分析的相关向量机高光谱图像分类[J]. 电子与信息学报, 2012, 34(8): 29-32. doi: 10.3724/SP.J.1146.2011.01282.
|
ZHAO Chunhui , ZHANG Yi, and WANG Yulei. Relevant vector machine classification of hyperspectral image based on wavelet kernel principal component analysis[J]. Journal of Electronics Information Technology, 2012, 34(8): 29-32. doi: 10.3724/SP.J.1146.2011.01282.
|
NURCIHAN C. Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks[J]. Journal of African Earth Sciences, 2014, 100(11): 634-644.
|
CLMENT D and FRDRIC E M. Stationary max-stable processes with the Markov property[J]. Stochastic Processes and their Applications, 2014, 124(6): 2266-2279.
|
唐朝伟, 李超群, 燕凯, 等. 基于LISOMAP的相关向量机入侵检测模型[J]. 计算机应用, 2012, 32(9): 2606-2608.
|
TANG Chaowei, LI Chaoqun, YAN Kai, et al. Intrusion detection model based on LISOMAP relevant vector machine[J]. Journal of Computer Applications, 2012, 32(9): 2606-2608.
|
WANG Li, HU Jianfeng, and LIU Yongwei. Proceedings of an adaptive line search scheme for compressed sensing based on nemirovski's algorithm[C]. Proceedings of the 2nd National Conference on Information Technology and Computer Science, Shanghai, 2015: 7-8.
|
GHAEDI M, GHAEDI A M, HOSSAINPOUR M, et al. Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study[J]. Journal of Industrial and Engineering Chemistry, 2014, 25(4): 1641-1649.
|
李蕴华. 压缩感知框架下基于ROMP 算法的图像精确重构[J]. 计算机应用, 2011, 31(10): 2714-2716.
|
LI Yunhua. Precise image reconstruction based on ROMP algorithm in compressive sensing[J]. Journal of Computer Applications, 2011, 31(10): 2714-2716.
|
LIN C K Y, Haley K B, and SPARKS C. A comparative study of both standard and adaptive versions of threshold accepting and simulated annealing algorithms in three scheduling problems[J]. European Journal of Operational Research, 1995, 83(2): 330-346.
|
OLG A S P, EFSTATHIOS Z, FADY R M, et al. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis[J]. Food Research International, 2013, 50(1): 241-249.
|