Citation: | HU Zhanwei, JIAO Liguo, XU Shengjin, HUANG Yong. Design of An Exponential-like Kernel Function Based on Multi-scale Resampling[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1689-1695. doi: 10.11999/JEIT151101 |
SMOLA A J and SCHLKOPF B. On a kernel-based method for pattern recognition, regression, approximation, and operator inversion[J]. Lgorithmica, 1998, 22(1): 211-231. doi: 10.1007/PL00013831.
|
KOHLER M, SCHINDLER A, and SPERLICH S. A review and comparison of bandwidth selection methods for kernel regression [J]. International Statistical Review, 2014, 82(2): 243-274. doi: 10.1111/insr.12039.
|
DAS D, DEVI R, PRASANNA S, et al. Performance comparison of online handwriting recognition system for assamese language based on HMM and SVM modelling[J]. International Journal of Computer Science Information Technology, 2014, 6(5): 87-95. doi: 10.5121/csit.2014.4717.
|
HASTIE T and LOADER C. Local regression: Automatic kernel carpentry[J]. Statistical Science, 1993, 8(2): 120-143. doi: 10.1214/ss/1177011002.
|
SCHLKOPF B, SMOLA A, and MLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. doi: 10.1162/ 089976698300017467.
|
BUCAK S S, JIN R, and JAIN A K. Multiple kernel learning for visual object recognition: A review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369. doi: 10.1109/TPAMI.2013.212.
|
BACH F R, LANCKRIET G R, and JORDAN M I. Multiple kernel learning, conic duality, and the SMO algorithm[C]. Proceedings of the Twenty-first International Conference on Machine Learning, Banff, Canada, 2004: 1-6. doi: 10.1145/1015330.1015424.
|
吴涛, 贺汉根, 贺明科. 基于插值的核函数构造[J]. 计算机学报, 2003, 26(8): 990-996.
|
WU Tao, HE Hangen, and HE Mingke. Interpolation based kernel functions construction[J]. Chinese Journal of Computers, 2003, 26(8): 990-996.
|
JAIN P, KULIS B, and DHILLON I S. Inductive regularized learning of kernel functions[C]. Proceedings of the Advances in Neural Information Processing Systems, Vancouver, Canada, 2010: 946-954.
|
ZHANG L, ZHOU W, and JIAO L. Wavelet support vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1): 34-39. doi: 10.1109/TSMCB.2003.811113.
|
NADARAYA E A. On estimating regression[J]. Theory of Probability Its Applications, 1964, 9(1): 141-142. doi: 10.1137/1109020.
|
WASSERMAN L著, 吴喜之译. 现代非参数统计[M]. 北京: 科学出版社, 2008: 163-179.
|
WATSON G S. Smooth regression analysis[J]. Sankhyā: The Indian Journal of Statistics, Series A, 1964, 26(4): 359-372.
|
CRISTIANINI N and SHAWE-TAYLOR J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M]. Cambridge: Cambridge University Press, 2000: 93-112.
|
VLADIMIR V N and VAPNIK V. Statistical Learning Theory[M]. New York: Wiley, 1998: 293-394.
|
CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27. doi: 10.1145 /1961189.1961199.
|
REN Y and BAI G. Determination of optimal SVM parameters by using GA/PSO[J]. Journal of Computers, 2010, 5(8): 1160-1168. doi: 10.4304/jcp.5.8.1160-1168.
|
SARAFIS I, DIOU C, and TSIKRIKA T. Weighted SVM from click through data for image retrieval[C]. 2014 IEEE International Conference on Image Processing (ICIP 2014), Paris, 2014: 3013-3017. doi: 10.1109/ICIP.2014.7025609.
|
SONKA M, HLAVAC V, and BOYLE R. Image Processing, Analysis, and Machine Vision[M]. Kentucky: Cengage Learning, 2014: 257-749. doi: 10.1007/978-1-4899-3216-7.
|
SELLAM V and JAGADEESAN J. Classification of normal and pathological voice using SVM and RBFNN[J]. Journal of Signal and Information Processing, 2014, 5(1): 1-7. doi: 10. 4236/jsip.2014.51001.
|
高晋占. 微弱信号检测[M]. 北京: 清华大学出版社有限公司, 2004: 154-299.
|
GAO Jinzhan. Weak Signal Detection[M]. Beijing: Tsinghua University Press Ltd., 2004: 154-299.
|
MERCER J. Functions of positive and negative type, and their connection with the theory of integral equations[J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 1909, 209(456): 415-446. doi: 10.1098/rsta.1909. 0016.
|
MARRON J and CHUNG S. Presentation of smoothers: The family approach[J]. Computational Statistics, 2001, 16(1): 195-207. doi: 10.1007/s001800100059.
|