Advanced Search
Volume 38 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
FENG Xiang, CHEN Zhikun, ZHAO Yinan, ZHOU Zhiquan. Unimodular Waveforms Design for Netted Radar System via Joint Optimization Relaxed Alternating Projection[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1745-1751. doi: 10.11999/JEIT151152
Citation: FENG Xiang, CHEN Zhikun, ZHAO Yinan, ZHOU Zhiquan. Unimodular Waveforms Design for Netted Radar System via Joint Optimization Relaxed Alternating Projection[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1745-1751. doi: 10.11999/JEIT151152

Unimodular Waveforms Design for Netted Radar System via Joint Optimization Relaxed Alternating Projection

doi: 10.11999/JEIT151152
Funds:

The National Natural Science Foundation of China (61371181)

  • Received Date: 2015-10-16
  • Rev Recd Date: 2016-03-03
  • Publish Date: 2016-07-19
  • The netted radar often suffers congested spectrum assignment, high autocorrelation sidelobes as well as cross-interference of transmitted waveforms. In this paper, the Joint Optimization Relaxed Alternating Projection (JORAP) method is introduced to design sparse frequency waveforms with low auto- and cross-correlation sidelobes under the unimodular constraint. Firstly, the original optimization issue is converted into spectrum approximation issue via FFT between the aperiodic correlation function and power spectral density. Secondly, different design requirements are synthesized via multi-objective optimization mechanism. Next, the projection space is exploited utilizing its relaxed factor and accelerating factor. Finally, the iterative optimization is conducted by FFT and accelerated alternating projection. Simulations demonstrate that this algorithm, without computing conjugate gradient, can avoid the local stagnation and obtain efficient performance, which seems more convenient for engineering than some prevalent alternating projections or cyclic algorithms.
  • loading
  • DENG H. Orthogonal netted radar systems[J]. IEEEAerospace and Electronic Systems Magazine, 2012, 27(5): 28-35. doi: 10.1109/MAES.2012.6226692.
    BARBARY M and ZONG P. Optimisation for stealth target detection based on stratospheric balloon-borne netted radar system[J]. IET Radar, Sonar Navigation, 2015, 9(7): 802-816. doi: 10.1049/iet-rsn.2014.0308.
    周宇, 张林让, 赵珊珊. 组网雷达低自相关旁瓣和互相关干扰的稀疏频谱波形设计方法[J]. 电子与信息学报, 2014, 36(6): 1394-1399. doi: 10.3724/SP.J.1146.2013.00702.
    ZHOU Yu, ZHANG Linrang, and ZHAO Shanshan. Sparse frequency waveforms design with low correlation sidelobes for Netted Radar[J]. Journal of Electronics Information Technology, 2014, 36(6): 1394-1399. doi: 10.3724/SP.J.1146. 2013.00702.
    ROWE W, STOICA P, and LI J. Spectrally constrained waveform design [sp TipsTricks][J]. IEEE Signal Processing Magazine, 2014, 31(3): 157-162. doi: 10.1109/MSP.2014. 2301792.
    DENG H. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3126-3135. doi: 10.1109/TSP.2004.836530.
    CHEN W, CAI Z, CHEN R, et al. Optimizing polyphase sequences for orthogonal netted radar systems[J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 529-535. doi: 10.1109/JSEE.2012.00067.
    庄珊娜, 贺亚鹏, 朱晓华. 低距离旁瓣稀疏频谱波形相位编码设计[J]. 电子与信息学报, 2012, 34(5): 1088-1095. doi: 10. 3724/SP.J.1146.2011.00973.
    ZHUANG Shanna, HE Yapeng, and ZHU Xiaohua. Phase coding for sparse frequency waveform with low range sidelobes[J]. Journal of Electronics Information Technology, 2012, 34(5): 1088-1095. doi: 10.3724/SP.J.1146.2011.00973.
    WANG G H and LU Y L. Designing single/multiple spares frequency waveforms with sidelobe constraint [J]. IET Radar, Sonar Navigation, 2011, 5(1): 32-38. doi: 10.1049/iet-rsn. 2009.0255.
    HE H, STOICA P, and LI J. Waveform design with stopband and correlation constraints for cognitive radar[C]. 2010 2nd IEEE International Workshop on Cognitive Information Processing (CIP), Elba, 2010: 344-349. doi: 10.1109/CIP. 2010.5604089.
    赵宜楠, 张涛, 李风从, 等. 基于交替投影的MIMO雷达最优波形设计[J]. 电子与信息学报, 2014, 36(6): 1368-1373. doi: 10.3724/SP.J.1146.2013.01198.
    ZHAO Yinan, ZHANG Tao, LI Fengcong, et al. Optimal waveform design for MIMO radar via alternating projection [J]. Journal of Electronics Information Technology, 2014, 36(6): 1368-1373. doi: 10.3724/SP.J.1146.2013.01198.
    ZHAO Y N, LI F C, ZHANG T, et al. Computational design of optimal waveforms for MIMO radar via multi-dimensional iterative spectral approximation[J]. Multidimensional Systems and Signal Processing, 2016, 27(1): 43-60. doi: 10.1007/s11045-014-0288-1.
    李风从, 赵宜楠, 乔晓林. 抑制特定区间距离旁瓣的恒模波形设计方法[J]. 电子与信息学报, 2013, 35(3): 532-536. doi: 10.3724/SP.J.1146.2012.00857.
    LI Fengcong, ZHAO Yinan, and QIAO Xiaolin. Constant modular waveform design method for suppressing range sidelobes in specified intervals[J]. Journal of Electronics Information Technology, 2013, 35(3): 532-536. doi: 10.3724 /SP.J.1146.2012.00857.
    TROPP J, DHILLON I S, HEATH Jr R W, et al. Designing structured tight frames via an alternating projection method [J]. IEEE Transactions on Information Theory, 2005, 51(1): 188-209. doi: 10.1109/TIT.2004.839492.
    CEGIELSKI A and DYLEWSKI R. Variable target value relaxed alternating projection method[J]. Computational Optimization and Applications, 2010, 47(3): 455-476. doi: 10.1007/s10589-009-9233-x.
    李姣芬, 胡锡炎, 张磊. 闭凸集约束下线性矩阵方程求解的松弛交替投影算法[J]. 数学学报, 2014, 57(1): 17-34.
    LI Jiaofen, HU Xiyan, and ZHANG Lei. Relaxed alternating projection method for solving linear matrix equation problem under closed convex constraint[J]. Acta Mathematica Sinica, 2014, 57(1): 17-34.
    LEONG H W and DAWE B. Channel availability for east coast high frequency surface wave radar systems[R]. Defence Research Establishment Ottawa (Ontario), 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1289) PDF downloads(467) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return