Advanced Search
Volume 38 Issue 7
Jul.  2016
Turn off MathJax
Article Contents
LU Cunbo, XIAO Song, QUAN Lei. Construction of Compressed Sensing Measurement Matrix Based on Binary Sequence Family[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1682-1688. doi: 10.11999/JEIT151076
Citation: LU Cunbo, XIAO Song, QUAN Lei. Construction of Compressed Sensing Measurement Matrix Based on Binary Sequence Family[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1682-1688. doi: 10.11999/JEIT151076

Construction of Compressed Sensing Measurement Matrix Based on Binary Sequence Family

doi: 10.11999/JEIT151076
Funds:

The National Natural Science Foundation of China (61372069), The Programme of Introducing Talents of Discipline to Universities (111 Project) (B08038)

  • Received Date: 2015-09-21
  • Rev Recd Date: 2016-01-20
  • Publish Date: 2016-07-19
  • It is significant to construct deterministic measurement matrix for the promotion and application of the Compressed Sensing (CS) theory. Originating from the algebraic coding theory, a construction algorithm of Binary Sequence Family (BSF) based deterministic measurement matrix is presented. The coherence is an important criterion to describe the property of matrices. Lower coherence leads to higher reconstruction performance. The coherence of the proposed measurement matrix is derived to be smaller than the corresponding Gaussian random matrix and Bernoulli random matrix. Theoretical analysis and simulation results show that the proposed matrix can obtain better reconstruction results than the corresponding Gaussian random matrix and Bernoulli random matrix. The proposed matrix can make the hardware realization convenient and easy by means of Linear Feedback Shift Register (LFSR) structures, thus being conductive to practical compressed sensing.
  • loading
  • CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083.
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109 /TIT.2006.871582.
    CANDES E J and TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. doi: 10.1109/TIT.2005.858979.
    BOURGAIN J, DILWORTH S, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145-185. doi: 10.1215/ 00127094-1384809.
    GAN H, LI Z, LI J, et al. Compressive sensing using chaotic sequence based on chebyshev map[J]. Nonlinear Dynamics, 2014, 78(4): 2429-2438. doi: 10.1007/s11071-014-1600-1.
    CASTORENA J and CREUSERE C D. The restricted isometry property for banded random matrices[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 5073-5084. doi: 10.1109/TSP.2014.2345350.
    ZHANG J, HAN G, and FANG Y. Deterministic construction of compressed sensing matrices from protograph LDPC codes[J]. IEEE Signal Processing Letters, 2015, 22(11): 1960-1964. doi: 10.1109/LSP.2015.2447934.
    党骙, 马林华, 田雨, 等. m序列压缩感知测量矩阵构造[J].西安电子科技大学学报, 2015, 42(2): 186-192. doi: 10.3969/ j.issn.1001-2400.2015.02.031.
    DANG Kui, MA Linhua, TIAN Yu, et al. Construction of the compressive sensing measurement matrix based on m sequences[J]. Journal of Xidian University, 2015, 42(2): 186-192. doi: 10.3969/j.issn.1001-2400.2015.02.031.
    夏树涛, 刘璐, 刘鑫吉. 基于Berlekamp-Justesen码的压缩感知确定性测量矩阵的构造[J]. 电子与信息学报, 2015, 37(4): 763-769. doi: 10.11999/JEIT140875.
    XIA Shutao, LIU Lu, and LIU Xinji. Deterministic constructions of compressive sensing matrices based on berlekamp-justesen codes[J]. Journal of Electronics Information Technology, 2015, 37(4): 763-769. doi: 10. 11999/JEIT140875.
    赵瑞珍, 王若乾, 张凤珍, 等. 分块的有序范德蒙矩阵作为压缩感知测量矩阵的研究[J]. 电子与信息学报, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860.
    ZHAO Ruizhen, WANG Ruoqian, ZHANG Fengzhen, et al. Research on the blocked ordered vandermonde matrix used as measurement matrix for compressed sensing[J]. Journal of Electronics Information Technology, 2015, 37(6): 1317-1322. doi: 10.11999/JEIT140860.
    ZENG L, ZHANG X, CHEN L, et al. Deterministic construction of toeplitzed structurally chaotic matrix for compressed sensing[J]. Circuits, Systems, and Signal Processing, 2015, 34(3): 797-813. doi: 10.1007/s00034-014- 9873-7.
    LI S and GE G. Deterministic sensing matrices arising from near orthogonal systems[J]. IEEE Transactions on Information Theory, 2014, 60(4): 2291-2302. doi: 10.1109/ TIT.2014.2303973.
    MOHADES M M, MOHADES A, and TADAION A. A reed-solomon code based measurement matrix with small coherence[J]. IEEE Signal Processing Letters, 2014, 21(7): 839-843. doi: 10.1109/LSP.2014.2314281.
    YU N Y and GONG G. A new binary sequence family with low correlation and large size[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1624-1636. doi: 10.1109/ TIT.2006.871062.
    CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61. doi: 10.1137/ S1064827596304010.
    TROPP J. Greed is good: algorithmic results for sparse approximation[J]. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242. doi: 10.1109/TIT.2004.834793.
    DONOHO D L and ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of Sciences of the Unifed States of America, 2003, 100(5): 2197-2202. doi: 10.1073/pnas. 0437847100.
    HAUPT J, BAJWA W U, RAZ G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875. doi: 10.1109/TIT.2010.2070191.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1958) PDF downloads(562) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return