Citation: | JIN Guangzhi, SHI Linsuo, CUI Zhigao, LIU Hao, MU Weijie. Online Object Tracking Based on Gray-level Co-occurrence Matrix and Third-order Tensor[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1609-1615. doi: 10.11999/JEIT151108 |
YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: A review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
|
HO J, LEE K C, YANG M H, et al. Visual tracking using learned linear subspaces[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 782-789.
|
LEE K C and KRIEGMAN D. Online learning of probabilistic appearance manifolds for video-based recognition and tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 852-859.
|
ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2013, 77(3): 125-141.
|
LATHAUWER L, MOOR B, and VANDEWALLE J. On the best rank-1 and approximation fhigherorder tensors[J]. SIAM Journal of Matrix Analysis and Applications, 2000, 21(4): 1324-1342.
|
LI X, HU W, ZHANG Z, et al. Visual tracking via incremental Log-Euclidean Riemannian sub-space learning [C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 578-585.
|
LI X, HU W, ZHANG Z, et al. Robust visual tracking based on incremental tensor subspace learning[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2012: 1008-1016.
|
钟桦, 杨晓鸣, 焦李成. 基于多分辨率共生矩阵的纹理图像分类[J]. 计算机研究与发展, 2014, 48(11): 1991-1999.
|
ZHONG Ye, YANG Xiaoming, and JIAO Licheng. Texture classification based on multiresolution co-occurrence matrix [J]. Journal of Computer Research and Development, 2014, 48(11): 1991-1999.
|
薄华, 马缚龙, 焦李成. 图像纹理的灰度共生矩阵计算问题的分析[J]. 电子学报, 2006, 34(1): 155-158.
|
BO Hua, MA Fulong, and JIAO Licheng. Research on computation of GLCM of image texture[J]. Acta Electronica Sinica, 2006, 34(1): 155-158.
|
CLAUSI D A and DENG H. Design-based texture Feature using Gabor filters and co-occurrence probabilities[J]. IEEE Transactions on Image Processing, 2005, 14(7): 925-936.
|
吴光文, 张爱军, 王昌明. 一种用于压缩感知理论的投影矩阵优化算法[J]. 电子与信息学报,2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450.
|
WU Guangwen, ZHANG Aijun, and WANG Changming. Novel optimization method for projection matrix in compress sensing theory[J]. Journal of Electronics Information Technology, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT 141450.
|
KHAN Z H and GUI Y H. Online domain-shift learning and object tracking based on nonlinear dynamic models and particle filters on Riemannian manifolds[J]. Computer Vision and Image Understanding, 2014, 15(6): 97-114.
|
齐苑辰, 吴成东, 陈东岳, 等. 基于稀疏表达的超像素跟踪算法[J]. 电子与信息学报, 2015, 37(3): 529-535. doi: 10.11999/ JEIT140374.
|
QI Yuanchen, WU Chengdong, CHEN Dongyue, et al. Superpixel tracking based on sparse representation[J]. Journal of Electronics Information Technology, 2015, 37(3): 529-535. doi: 10.11999/JEIT140374.
|
CHENG X, LI N, ZHOU T, et al. Object tracking via collaborative multi-task learning and appearance model updating[J]. Applied Soft Computing, 2015, 31: 81-90.
|
ZHONG W, LU H, and YANG M H. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.
|
WU Y, LIM J, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411-2418.
|