高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
一种基于双目PTZ相机的主从跟踪方法
崔智高, 李艾华, 姜柯, 周杰
2013, 35(4): 777-783. doi: 10.3724/SP.J.1146.2012.01023  刊出日期:2013-04-19
关键词: 目标跟踪, 主从跟踪, PTZ(Pan-Tilt-Zoom)相机, 变色龙视觉, 球面坐标模型
借鉴变色龙视觉的高度独立性、对称性、全局性与选择性兼顾等特点,该文提出一种基于双PTZ (Pan-Tilt-Zoom)相机的主从跟踪方法。由于两个相机的对称性和参数可变性、可控性,这种方法相对于静止加主动相机的主从跟踪系统,可以增大监控范围;相对于多静止加主动相机的系统,可减小硬件开销;相对于全向加主动相机的系统,更有利于信息融合。该文设计了基于球面坐标模型的主从控制方法,可方便实现两相机在任意pan-tilt-zoom参数下的主从模式跟踪,实现对目标的多尺度视觉关注。在室外场景中进行的多组实验验证了所提方法的有效性。
两种环签名方案的安全性分析及其改进
王化群, 张力军, 赵君喜
2007, 29(1): 201-204. doi: 10.3724/SP.J.1146.2005.00574  刊出日期:2007-01-19
关键词: 环签名;双线性对;伪造攻击;GDP(Gap Diffie-Hellman)
通过对Xu(2004)和Zhang(2004)提出的两种环签名方案进行分析,指出了这两种环签名方案都容易受到群成员改变攻击(group-changing attack),并给出了攻击方法;另外,Zhang的方案还容易受到多已知签名存在伪造(multiple-known-signature existential forgery)攻击。为防范这两种攻击,对这两种环签名方案进行了改进,改进后的方案在最强的安全模型(Joseph, 2004提出)中仍是安全的。
几种可转换环签名方案的安全性分析和改进
王化群, 郭显久, 于红, 彭玉旭
2009, 31(7): 1732-1735. doi: 10.3724/SP.J.1146.2008.00928  刊出日期:2009-07-19
关键词: 环签名;密码分析;可转换性
通过对Zhang-Liu-He (2006),Gan-Chen (2004)和Wang-Zhang-Ma (2007)提出的可转换环签名方案进行分析,指出了这几个可转换环签名方案存在可转换性攻击或不可否认性攻击,即,环中的任何成员都能宣称自己是实际签名者或冒充别的成员进行环签名。为防范这两种攻击,对这几个可转换环签名方案进行了改进,改进后的方案满足可转换环签名的安全性要求。
关于非对称含错学习问题的困难性研究
张江, 范淑琴
2020, 42(2): 327-332. doi: 10.11999/JEIT190685  刊出日期:2020-02-19
关键词: 抗量子密码, 格密码, 含错学习问题
由于基于最坏情况困难假设等优点,基于格的密码被认为是最具前景的抗量子密码研究方向。作为格密码的常用的两个主要困难问题之一,含错学习(LWE)问题被广泛用于密码算法的设计。为了提高格密码算法的性能,Zhang等人(2019)提出了非对称含错学习问题,该文将从理论上详细研究非对称含错学习问题和标准含错学习问题关系,并证明在特定错误分布下非对称含错学习问题和含错学习问题是多项式时间等价的,从而为基于非对称含错学习问题设计安全的格密码算法奠定了理论基础。
红外数字图象处理技术用于研究砷化镓材料中的缺陷形态分布
张福贵
1988, 10(6): 563-567.  刊出日期:1988-11-19
关键词: 红外图象; 砷化镓; 图象处理软件
本文介绍了一种用于研究砷化镓材料中的缺陷(比如EL2吸收特性等)的新方法:将一束波长为1.11.5m的近红外光穿过一块厚度为48mm,直径为50mm的砷化镓材料,用红外摄象机TOSHIBA 8844摄取图象,并直接送入计算机图象处理系统DATASUD,材料中的非均匀性缺陷图象,即材料中的缺陷(EL2,位错等)在截面上的分布结构形状(十字形,网状,球粒形等)就可从屏幕上观察到。本文给出了为研究这类材料设计的ZHIMAG(ZHang IMAGe)图象处理软件包和应用ZHIMAG所获得的一些结果。ZHIMAG也适用于其它类型的图象处理。
对一种新型代理签名方案的分析与改进
鲁荣波, 何大可, 王常吉, 缪祥华
2007, 29(10): 2529-2532. doi: 10.3724/SP.J.1146.2006.00414  刊出日期:2007-10-19
关键词: 代理签名;匿名代理签名;孤悬因子;强不可伪造性
Gu-Zhang-Yang(2005)提出了一个不需要可信第三方参与的匿名代理签名方案,由于该方案的签名验证数据中没有回避孤悬因子这一现象,因此并不满足强不可伪造性,原始签名人可以伪造一个有效的代理签名通过验证,并成功地在代理签名者身份揭示阶段向公众证明该伪造的代理签名是由合法的代理签名者产生的。本文在分析该方案安全性的基础上提出了改进的匿名代理签名方案,克服了原方案的不足。
基于身份的可链接和可转换环签名
王少辉, 郑世慧, 展涛
2008, 30(4): 995-998. doi: 10.3724/SP.J.1146.2007.00549  刊出日期:2008-04-19
关键词: 环签名; 基于身份环签名; 基于身份可链接环签名; 基于身份可链接可转换环签名; 双线性对
环签名是提供匿名发布信息的巧妙方法,该文首次给出了基于身份的可链接环签名和可链接可转换环签名的概念与安全的形式化定义。以Zhang和Kim的环签名方案为例,给出了为某些基于身份环签名添加可链接性的方法。并分别提出了高效的基于身份的可链接环签名和可链接可转换环签名方案,方案除满足完备匿名性和适应性选择消息攻击下的不可伪造性外,还分别满足可链接性和对非签名者的不可转换性。
一种基于分层译码和Min-max的多进制LDPC码译码算法
杨威, 张为
2013, 35(7): 1677-1681. doi: 10.3724/SP.J.1146.2012.01634  刊出日期:2013-07-19
关键词: 非二进制低密度奇偶校验码(NB-LDPC), 分层译码, Min-max, 准循环码
该文在现有译码算法的基础上提出一种高效的非二进制低密度奇偶校验码(NB-LDPC)译码方法,充分利用了分层译码算法与Min-max算法的优点,不但译码复杂度低、需要的存储空间小,而且可将译码速度提高一倍。应用该算法,对一种定义在GF(25)上的(620,509)码进行了仿真。该码的仿真结果表明:在相同误码率下,该文译码算法所需最大迭代次数仅为Zhang的算法(2011)的45%。
基于多层感知卷积和通道加权的图像隐写检测
叶学义, 郭文风, 曾懋胜, 张珂绅, 赵知劲
2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537  刊出日期:2022-08-17
关键词: 隐写检测, 卷积神经网络, 多层感知卷积, 通道加权
针对目前图像隐写检测模型中线性卷积层对高阶特征表达能力有限,以及各通道特征图没有区分的问题,该文构建了一个基于多层感知卷积和通道加权的卷积神经网络(CNN)隐写检测模型。该模型使用多层感知卷积(Mlpconv)代替传统的线性卷积,增强隐写检测模型对高阶特征的表达能力;同时引入通道加权模块,实现根据全局信息对每个卷积通道赋予不同的权重,增强有用特征并抑制无用特征,增强模型提取检测特征的质量。实验结果表明,该检测模型针对不同典型隐写算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的检测准确率,与最优的Zhu-Net相比,准确率提高1.95%~6.15%。
高性能YOLOv5:面向嵌入式平台高性能目标检测算法研究
刘乔寿, 赵志源, 王均成, 皮胜文
2023, 45(6): 2205-2215. doi: 10.11999/JEIT220413  刊出日期:2023-06-10
关键词: 目标检测, YOLOv5, 混洗网络2代, 自适应空间特征融合, 嵌入式设备, TensorRT加速
针对目前深度学习单阶段检测算法综合性能不平衡以及在嵌入式设备难以部署等问题,该文提出一种面向嵌入式平台的高性能目标检测算法。基于只看1次5代 (YOLOv5)网络,改进算法首先在主干网络部分采用设计的空间颈块代替原有的焦点模块,结合改进的混洗网络2代替换原有的跨级局部暗网络,减小空间金字塔池化 (SPP)的内核尺寸,实现了主干网络的轻量化。其次,颈部采用了基于路径聚合网络 (PAN)设计的增强型路径聚合网络 (EPAN),增加了P6大目标输出层,提高了网络的特征提取能力。然后,检测头部分采用以自适应空间特征融合 (ASFF)为基础设计的自适应空洞空间特征融合 (A-ASFF)来替代原有的检测头,解决了物体尺度变化问题,在少量增加额外开销情况下大幅提升检测精度。最后,函数部分采用高效交并比 (EIoU)代替完整交并比 (CIoU)损失函数,采用S型加权线性单元 (SiLU)代替HardSwish激活函数,提升了模型的综合性能。实验结果表明,与YOLOv5-S相比,该文提出的同版本算法在mAP@.5,mAP@.5:.95上分别提高了4.6%和6.3%,参数量降低了43.5%,计算复杂度降低了12.0%,在Jetson Nano平台上使用原模型和TensorRT加速模型进行速度评估,分别减少了8.1%和9.8%的推理延迟。该文所提算法的综合指标超越了众多优秀的目标检测网络,对嵌入式平台更为友好,具有实际应用意义。
  • 首页
  • 上一页
  • 1
  • 2
  • 末页
  • 共:2页