高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
Whitenoise密码Wu破译方法的分析与改进
金晨辉, 张斌, 张远洋
2006, 28(8): 1530-1532.  刊出日期:2006-08-19
关键词: Whitenoise序列密码;密码分析;预测攻击;等效密钥
Whitenoise是由BSB Utilities公司提出的一个序列密码算法。Wu在2003年8月巧妙地给出了破译Whitenoise算法的一个解方程组方法。该文对Wu的破译算法进行了深入分析, 证明了Wu方法的两个基本假设是错误的, 因而Wu的方法不可能求出正确密钥。此外, 该文还对Wu的破译方法进行了改进, 给出了求解Whitenoise密码的秘密整数和秘密素数的方法, 并给出了对Whitenoise密码的一个预测攻击方法, 利用该方法可由其前80445个乱数求出其任一时刻的乱数。此外, 该文还给出了求出其全部秘密要素的一个思路。
电磁导弹系统
詹军, 李孝勖
1988, 10(2): 127-136.  刊出日期:1988-03-19
关键词: 电磁导弹; 频谱渐近条件; 瞬态场
本文发展了T.T.Wu教授(1985)提出的电磁导弹理论,总结出能产生电磁导弹效应的激励信号频谱渐近条件,提出了几种可能的电磁导弹系统。
对两个可转变认证加密方案的分析和改进
张串绒, 傅晓彤, 肖国镇
2006, 28(1): 151-153.  刊出日期:2006-01-19
关键词: 认证加密;签名;公开验证;机密性
该文对可转变认证加密进行了研究,指出了Wu-Hsu(2002)方案和Huang-Chang(2003)方案中存在的问题,分别给出了这两个方案的改进方案,很好地解决了认证加密方案的公开验证问题。
一种基于双目PTZ相机的主从跟踪方法
崔智高, 李艾华, 姜柯, 周杰
2013, 35(4): 777-783. doi: 10.3724/SP.J.1146.2012.01023  刊出日期:2013-04-19
关键词: 目标跟踪, 主从跟踪, PTZ(Pan-Tilt-Zoom)相机, 变色龙视觉, 球面坐标模型
借鉴变色龙视觉的高度独立性、对称性、全局性与选择性兼顾等特点,该文提出一种基于双PTZ (Pan-Tilt-Zoom)相机的主从跟踪方法。由于两个相机的对称性和参数可变性、可控性,这种方法相对于静止加主动相机的主从跟踪系统,可以增大监控范围;相对于多静止加主动相机的系统,可减小硬件开销;相对于全向加主动相机的系统,更有利于信息融合。该文设计了基于球面坐标模型的主从控制方法,可方便实现两相机在任意pan-tilt-zoom参数下的主从模式跟踪,实现对目标的多尺度视觉关注。在室外场景中进行的多组实验验证了所提方法的有效性。
长度为pm的离散哈脱莱变换分离基算法
茅一民
1990, 12(6): 584-592.  刊出日期:1990-11-19
关键词: 正交变换; 离散哈脱莱变换; 分离基算法
Soo-Chang Pei,Ja-Ling wu(1986)和茅一民(1987)提出了长度为2m的分离基2/4哈脱莱变换算法。本文将分离基算法推广到长度为pm的哈脱莱变换,并证明基p2算法实乘次数比基p算法少,而基p/p2算法实乘次数比前两者都少。作为例子,给出了长度为N=3m的基3/9哈脱莱变换快速算法和流图。
高性能YOLOv5:面向嵌入式平台高性能目标检测算法研究
刘乔寿, 赵志源, 王均成, 皮胜文
2023, 45(6): 2205-2215. doi: 10.11999/JEIT220413  刊出日期:2023-06-10
关键词: 目标检测, YOLOv5, 混洗网络2代, 自适应空间特征融合, 嵌入式设备, TensorRT加速
针对目前深度学习单阶段检测算法综合性能不平衡以及在嵌入式设备难以部署等问题,该文提出一种面向嵌入式平台的高性能目标检测算法。基于只看1次5代 (YOLOv5)网络,改进算法首先在主干网络部分采用设计的空间颈块代替原有的焦点模块,结合改进的混洗网络2代替换原有的跨级局部暗网络,减小空间金字塔池化 (SPP)的内核尺寸,实现了主干网络的轻量化。其次,颈部采用了基于路径聚合网络 (PAN)设计的增强型路径聚合网络 (EPAN),增加了P6大目标输出层,提高了网络的特征提取能力。然后,检测头部分采用以自适应空间特征融合 (ASFF)为基础设计的自适应空洞空间特征融合 (A-ASFF)来替代原有的检测头,解决了物体尺度变化问题,在少量增加额外开销情况下大幅提升检测精度。最后,函数部分采用高效交并比 (EIoU)代替完整交并比 (CIoU)损失函数,采用S型加权线性单元 (SiLU)代替HardSwish激活函数,提升了模型的综合性能。实验结果表明,与YOLOv5-S相比,该文提出的同版本算法在mAP@.5,mAP@.5:.95上分别提高了4.6%和6.3%,参数量降低了43.5%,计算复杂度降低了12.0%,在Jetson Nano平台上使用原模型和TensorRT加速模型进行速度评估,分别减少了8.1%和9.8%的推理延迟。该文所提算法的综合指标超越了众多优秀的目标检测网络,对嵌入式平台更为友好,具有实际应用意义。