高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
De Bruijn序列的升元算法
朱士信
2000, 22(1): 68-72.  刊出日期:2000-01-19
关键词: 移位寄存器序列; de Bruijn序列; 循环圈
本文给出一种de Bruijn序列的升元算法。该算法每步运算可生成一列元素而不是一个元素,因而减少了运算次数,加快了生成速度。
基于矩阵LU分解的数字水印算法
牛少彰, 钮心忻, 杨义先
2004, 26(10): 1620-1625.  刊出日期:2004-10-19
关键词: 信息隐藏; 数字水印; LU分解
该文提出了一种新的基于矩阵LU分解的数字水印算法。该方法首先将数字图像的非负矩阵表示转化为G-对角占优矩阵,再进行LU分解,通过量化函数进行数字水印的嵌入,恢复水印时不需要原始图像。将矩阵的LU分解数字水印算法与DCT的中频系数比较法进行了对比实验。实验结果表明这种方法运算速度快并且具有很好的鲁棒性。
基于LU分解的稀疏目标定位算法
赵春晖, 许云龙, 黄辉
2013, 35(9): 2234-2239. doi: 10.3724/SP.J.1146.2012.01527  刊出日期:2013-09-19
关键词: 无线传感器网络, 目标定位, 压缩感知, LU分解
针对基于orth的稀疏目标定位算法中orth预处理会影响原信号的稀疏性的问题,该文提出一种基于LU分解的稀疏目标定位算法。该算法通过网格化感知区域把目标定位问题转化为压缩感知问题,并利用LU分解法对观测字典进行分解得到新的观测字典。该观测字典有效地满足了约束等距性条件,同时对观测值的预处理过程不影响原信号的稀疏性,从而有效地保证了算法的重建性能,提升了算法的定位精度。实验结果表明,基于LU分解的稀疏目标定位算法的性能远优于基于orth的稀疏目标定位算法,目标的定位精度得到了较大地提升。
De Bruijn序列的k次齐次复杂度
朱士信
1993, 15(2): 204-207.  刊出日期:1993-03-19
关键词: De Druijn序列; 齐次复杂度; 矩阵; 矩阵的秩
De Bruijn序列是一类最重要的非线性移位寄存器序列。本文定义并研究了n级De Bruijn序列的k次齐次复杂度Ck(s),给出了Ck(s)的一个上界。k=1及k=2时,Ck(s)分别为人们所熟知的线性复杂度及二次齐次复杂度。
一种快速生成k元de Bruijn序列的算法
朱士信
1995, 17(6): 618-622.  刊出日期:1995-11-19
关键词: 移位寄存器; De Bruijn序列; 循环圈
De Bruijn序列是一类最重要的非线性移位寄存器序列。本文通过并置所有循环圈的周期约化,提出了一个新的生成k元de Bruijn序列的算法。该算法每步运算可生成一列元素而不是一个元素,因此减少了运算次数,加快了生成速度。
一种基于Doolittle LU分解的线性方程组并行求解方法
徐晓飞, 曹祥玉, 姚旭, 陈盼
2010, 32(8): 2019-2022. doi: 10.3724/SP.J.1146.2009.01401  刊出日期:2010-08-19
关键词: Doolittle LU分解, 线性方程组, 并行计算
矩阵方程的快速求解是矩量法计算电大问题的关键,LU分解是求解线性方程组的有效方法。该文详细地分析了Doolittle LU分解过程,基于分解过程的特点,在MPI(Message-Passing interface) 并行环境下,提出了按直角式循环对进程进行任务分配的并行求解方法。实验证明该方法可以有效地减少进程间数据通信量,从而加快计算速度。
一种基于差分演化的粒子滤波算法
李红伟, 王俊, 王海涛
2011, 33(7): 1639-1643. doi: 10.3724/SP.J.1146.2010.01212  刊出日期:2011-07-19
关键词: 目标跟踪, 粒子滤波, 差分演化, 无迹卡尔曼滤波
针对粒子滤波(Particle Filter, PF)存在的粒子退化和贫化问题,该文提出一种基于差分演化(Differential Evolution, DE)的PF算法。首先,为了充分利用最新的观测信息,采用无迹卡尔曼滤波(Unscented Kalman Filter, UKF)来产生重要性分布,对重要性分布产生的采样粒子不再做传统重采样操作,而是直接把采样粒子当作DE中的种群样本,粒子权重作为样本的适应函数,对粒子做差分变异、交叉、选择等迭代优化,最后得到最优的粒子点集。试验结果表明,该算法有效缓解了传统PF算法中的粒子退化和贫化,提高了粒子的利用率,具有较好的估计精度。
基于贝叶斯网络模型的遥感图像数据处理技术
李启青, 马建文, 哈斯巴干, 韩秀珍, 刘志丽
2003, 25(10): 1321-1326.  刊出日期:2003-10-19
关键词: 贝叶斯网络模型; 知识描述; 信息推理; 遥感图像数据
贝叶斯网络是一种不确定性知识的推理和描述技术,针对遥感数据的复杂性和不确定性,该文提出了一种基于贝叶斯网络模型的遥感数据推理和描述技术。文中利用 2002年春季中-日亚洲沙尘暴项目的土地利用数据(LU),沙尘监测数据(TSP),卫星 AVHRR时间序列 LST/Albedo数据,采用贝叶斯网络模型进行了知识描述和信息推理预测实验,取得了较好的效果。
长拖尾K分布杂波下雷达目标散射中心参数的稳健估计
石志广, 周剑雄, 赵宏钟, 付强
2007, 29(12): 2848-2852. doi: 10.3724/SP.J.1146.2006.00516  刊出日期:2007-12-19
关键词: 雷达;长拖尾分布;衰减指数模型;M估计;K分布杂波
实际条件下,在对基于衰减指数(DE)和模型的雷达目标散射中心参数估计和特征提取时,其噪声背景往往是非高斯的,分布密度函数表现出长拖尾性质。利用基于高斯假设条件下的估计方法进行参数估计时,往往不能得到较好的结果。针对这种情况,该文利用M估计方法来实现对长拖尾杂波下DE模型参数的稳健估计。首先分析了基于PRONY模型的M估计实现方法存在的不足,其次提出了两种较为有效的DE模型散射中心参数M估计的实现方法,并对这两种方法进行了分析和比较。仿真实验结果表明,在一类长拖尾K分布杂波条件下,与ESPRIT方法以及扩展PRONY估计方法相比,该文所提的两种方法均能得到较好的估计结果。
基于国产众核超级计算机的6×105核并行矩量法
顾宗静, 吴昊翔, 赵勋旺, 林中朝, 张玉, 张崎
2019, 41(4): 845-850. doi: 10.11999/JEIT180562  刊出日期:2019-04-01
关键词: 矩量法, LU分解, 国产超级计算机, 6×105

为实现电磁计算的安全可靠和自主可控,该文基于“天河二号”国产众核超级计算机平台,开展大规模并行矩量法(MoM)的开发工作。为减轻大规模并行计算时计算机集群的通信压力以及加速矩量法积分方程求解,通过分析矩量法电场积分方程离散生成的矩阵具有对角占优特性,提出一种新型LU分解算法,即对角块矩阵选主元LU分解(BDPLU)算法,该算法减少了panel列分解的计算量,更重要的是,完全消除了选主元过程的MPI通信开销。利用BDPLU算法,并行矩量法突破了6×105 CPU核并行规模,这是目前在国产超级计算平台上实现的最大规模的并行矩量法计算,其矩阵求解并行效率可达51.95%。数值结果表明,并行矩量法可准确高效地在国产超级计算平台上解决大规模电磁问题。

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 末页
  • 共:3页