高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
一种通用的时间数字转换器码密度校准信号产生方法及其实现
李海涛, 李斌康, 田耕, 阮林波, 赵前, 吕宗璟
2021, 43(8): 2121-2127. doi: 10.11999/JEIT200769  刊出日期:2021-08-10
关键词: 时间数字转换器, 码密度校准, 相干采样, TDC主时钟, 校准信号
该文提出一种通用的时间数字转换器(TDC)码密度校准信号产生方法,该方法基于相干采样理论,通过合理设置TDC主时钟和校准信号之间的频率差,结合输出信号保持电路,产生校准用的随机信号,在码密度校准过程中,随机信号均匀分布在TDC的延时路径上,实现对TDC的bin-by-bin校准。基于Xilinx公司的28 nm工艺的Kintex-7 现场可编程门阵列(FPGA)内部的进位链实现一种plain TDC,利用该方法校准plain TDC的码宽(抽头延迟时间),研究校准了2抽头方式下的TDC的性能参数,时间分辨率(对应TDC的最低有效位,Least Significant Bit, LSB)为24.9 ps,微分非线性为(–0.84~3.1)LSB,积分非线性为(–5.0~2.2)LSB。文中所述的校准方法采用时钟逻辑资源实现,多次测试考核结果表明,单个延时单元的标准差优于0.5 ps。该校准方法采用时钟逻辑资源代替组合逻辑资源,重复性、稳定性较好,实现了对plain TDC的高精度自动校准。该方法同样适用于其他类型的TDC的码密度校准。
一组基于广义局部沃尔什变换的纹理特征
张志龙, 沈振康, 李吉成
2006, 28(6): 1031-1035.  刊出日期:2006-06-19
关键词: 图像处理;模式识别;广义局部沃尔什变换;纹理特征
该文提出一组基于广义局部沃尔什变换(GLWT)的纹理特征。首先给出局部沃尔什变换(LWT)的定义,并在空域中对其加以推广,用以提取图像的局部纹理信息;然后在一个宏窗口中估计12个GLWT系数的二阶矩作为图像的纹理特征。对这组纹理特征的鉴别性能进行了分析,并与Haralick(1973),Wang Li(1990),以及Yu Hui提出的纹理特征进行了比较。实验结果表明,该文提出的纹理特征具有更好的鉴别性能和分类能力。
两种环签名方案的安全性分析及其改进
王化群, 张力军, 赵君喜
2007, 29(1): 201-204. doi: 10.3724/SP.J.1146.2005.00574  刊出日期:2007-01-19
关键词: 环签名;双线性对;伪造攻击;GDP(Gap Diffie-Hellman)
通过对Xu(2004)和Zhang(2004)提出的两种环签名方案进行分析,指出了这两种环签名方案都容易受到群成员改变攻击(group-changing attack),并给出了攻击方法;另外,Zhang的方案还容易受到多已知签名存在伪造(multiple-known-signature existential forgery)攻击。为防范这两种攻击,对这两种环签名方案进行了改进,改进后的方案在最强的安全模型(Joseph, 2004提出)中仍是安全的。
基于多层感知卷积和通道加权的图像隐写检测
叶学义, 郭文风, 曾懋胜, 张珂绅, 赵知劲
2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537  刊出日期:2022-08-17
关键词: 隐写检测, 卷积神经网络, 多层感知卷积, 通道加权
针对目前图像隐写检测模型中线性卷积层对高阶特征表达能力有限,以及各通道特征图没有区分的问题,该文构建了一个基于多层感知卷积和通道加权的卷积神经网络(CNN)隐写检测模型。该模型使用多层感知卷积(Mlpconv)代替传统的线性卷积,增强隐写检测模型对高阶特征的表达能力;同时引入通道加权模块,实现根据全局信息对每个卷积通道赋予不同的权重,增强有用特征并抑制无用特征,增强模型提取检测特征的质量。实验结果表明,该检测模型针对不同典型隐写算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的检测准确率,与最优的Zhu-Net相比,准确率提高1.95%~6.15%。
H.263中全零系数块预测的新方法
钟伟才, 刘静, 焦李成, 刘芳
2003, 25(4): 573-576.  刊出日期:2003-04-19
关键词: 量化; 运动补偿; 全零系数块
用H.263标准对甚低码率图像编码时,经过帧间预测后得到的运动补偿数据通常很小,对这些数据再进行DCT和量化后往往成为全零块,Alice Yu算法和周算法是预先判别全零系数块的较为有效的方法,但在对较为复杂的序列图像进行预测时分别出现了较大程度的误判和漏判。针对这些缺点,该文提出了一种新的全零系数块的判别方法,它具有能随量化级的变化自适应地调整全零块的判断阈值、无需任何附加运算和对图像序列内容复杂程度不敏感的优点,将该方法应用于H.263编码器中,对Miss America和News图像序列进行仿真实验。实验表明,大约有40%-80%的块可以在做DCT和量化前被判别为全零系数块,大大减少了编码的时间,同时图像质量的下降控制在0.0005 dB以内。