高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
二维Hilbert-Huang变换的分解方法研究
盖强, 殷福亮
2006, 28(4): 610-613.  刊出日期:2006-04-19
关键词: 数字图像处理;二维Hilbert-Huang变换;局域波分析
该文根据Hilbert-Huang变换的原理,给出了二维内蕴模式函数分量的递推形式,实现了二维Hilbert-Huang变换的分解方法,并在图像分解应用中取得了满意的效果,从而拓展了Hilbert-Huang变换的应用范围。通过把原始图像自适应分解成有限数量的子图像,图像的细节能清晰地被分解出来,这在数字图像处理中有很重要的意义。
对两个可转变认证加密方案的分析和改进
张串绒, 傅晓彤, 肖国镇
2006, 28(1): 151-153.  刊出日期:2006-01-19
关键词: 认证加密;签名;公开验证;机密性
该文对可转变认证加密进行了研究,指出了Wu-Hsu(2002)方案和Huang-Chang(2003)方案中存在的问题,分别给出了这两个方案的改进方案,很好地解决了认证加密方案的公开验证问题。
基于过零点-极点估计的瞬时频率幅度算法
孙晖, 朱善安
2006, 28(5): 905-908.  刊出日期:2006-05-19
关键词: Hilbert-Huang变换;经验模态分解;内蕴模态函数;过零点-极点估计
Hilbert-Huang变换(HHT)理论通过经验模态分解(EMD)提取信号的内蕴模态函数(IMF),并对IMF利用Hilbert变换得到信号的时频幅度谱和边际谱。在总结Hilbert变换理论和算法实现局限性的基础上,提出基于过零点-极点估计求取IMF瞬时频率、幅度算法,通过对离散信号插值运算精确求取过零点和极点位置,并据此求出相应点的瞬时频率和幅度,最后采用三次样条求取信号的瞬时频率幅度曲线。通过几个典型的例子对该算法进行检验,结果表明,与Hilbert变换结果比较,借助该算法得到信号的时频幅度谱和边际谱结果更精确、频率分辨率更好。
一种基于空时分组编码的MIMO-SC/FDE系统的接收空间分集方案
徐信, 蔡跃明, 盛雁鸣, 徐友云
2006, 28(11): 2068-2072.  刊出日期:2006-11-19
关键词: 空时编码; 发射分集; 多输入多输出; 单载波分组传输; 频域均衡
该文提出了一种基于空时分组编码的多输入多输出频域均衡单载波分组传输(MIMO-SC/FDE)系统的空间分集接收方案,通过在Huang(2004)提出的分集结构中引入使用空时分组编码的发射分集,弥补了因减少DFT块数目而造成的性能损失,同时在接收端进一步减少了IDFT块的数目;通过适当设计空时分组编码,还可以进一步提高数据传输速率。该文详细推导了使用空时分组编码后的处理过程,并对使用空时编码后的MIMO-SC/FDE系统和相应的MIMO-OFDM系统性能进行了仿真比较。仿真结果表明,MIMO-SC/FDE系统的性能从总体上优于MIMO-OFDM系统。
经验模态分解中多种边界处理方法的比较研究
胡维平, 莫家玲, 龚英姬, 赵方伟, 杜明辉
2007, 29(6): 1394-1398. doi: 10.3724/SP.J.1146.2005.01326  刊出日期:2007-06-19
关键词: 信号处理;经验模态分解;边界效应;模式混淆
经验模态分解(EMD)的一个关键问题是处理边界效应。尽管目前除了Huang申请了NASA专利的边界处理方法,仍没有一个最终的解决方案,但工程上已经提出了多种处理方法。本文实现了工程上常用的5种EMD边界处理方法:线性外延,多项式拟合,镜像法,径向基(RBF)神经网络预测和AR预测方法,设计了一套消除了EMD处理中信号的相互作用及模式混淆影响的测试方法,并利用准周期信号和随机信号对它们的边界效应处理结果进行了定量测试。结果表明镜像法是目前相对最优的EMD边界处理方法。
基于改进EEMD的穿墙雷达动目标微多普勒特性分析
王宏, NarayananRM, 周正欧, 李廷军, 孔令讲
2010, 32(6): 1355-1360. doi: 10.3724/SP.J.1146.2009.00899  刊出日期:2010-06-19
关键词: 穿墙雷达; 经验模式分解; 整体平均经验模式分解; Hilbert-Huang变换; 微多普勒特性
穿墙雷达动目标探测中人的心跳、呼吸、手臂摆动等运动的微多普勒信号是非线性、非平稳信号,可以采用经验模式分解(EMD)对其进行时频分析。由于EMD分解存在模式混合问题,该文提出一种改进的整体平均经验模式分解(EEMD)方法,并将其应用于穿墙雷达人的运动微多普勒特性分析中,并且对分解后的每个本征模式函数(IMF)进行Hilbert-Huang变换(HHT),得到信号的时间-频率-能量谱。仿真数据和实验结果分析均表明,改进的EEMD方法不仅能够有效消除EMD中的模式混合问题,将人运动微多普勒信号中的不同频率尺度分解在不同的IMF中,而且还能够有效抑制原始信号中的噪声,提高信噪比,得到更精细、更清晰的时频分布。
基于EMD拟合特征的耳语音端点检测
潘欣裕, 赵鹤鸣, 陈雪勤, 徐敏
2008, 30(2): 362-366. doi: 10.3724/SP.J.1146.2006.01021  刊出日期:2008-02-19
关键词: 希尔伯特-黄变换; 经验模态分解; 内禀模态函数; 归一化拟合特征
耳语音作为人类发音的一种特殊形式,与正常语音相比具有信噪比低、元音的周期特征不明显等特性,因而耳语音处理比正常语音更为困难。耳语音处理研究的第1个关键步骤就是语音的端点检测,该文利用希尔伯特-黄变换(Hilbert-Huang Transform, HHT)中的经验模态分解(Empirical Mode Decomposition, EMD),首次提出了一种基于EMD拟合特征的耳语音端点检测新方法。利用EMD得到的内禀模态函数(Intrinsic Mode Function, IMF)能量,以其归一化拟合参数为耳语音端点检测的特征,可以准确地划分出耳语音端点。实验表明,该方法在耳语音端点检测中取得了很好的效果,在1200个信噪比为2~10dB的测试样本中,检测准确率为98.25%。
基于固有模态能量熵的微弱目标检测算法
关键, 张建
2011, 33(10): 2494-2499. doi: 10.3724/SP.J.1146.2011.00147  刊出日期:2011-10-19
关键词: 目标检测, Hilbert-Huang变换, 固有模态函数, 固有模态能量熵, 海杂波
该文分析了海杂波能量在各固有模态函数(IMF)间的分布特点,研究了目标对海杂波能量在各IMF间分布的影响。研究发现,无目标时,海杂波的能量主要集中于先分解出的3个IMF中,而当目标出现时,海杂波的能量将向后分解出的6个IMF扩散,且固有模态能量熵恰能描述目标出现引起的海杂波能量分布的这种变化,因此该文提出了采用固有模态能量熵检测微弱目标的算法。仿真结果表明,与基于盒维数的微弱目标检测算法、频域CFAR检测方法和多脉冲CA-CFAR(100个脉冲)检测算法相比,该算法的检测性能较好,有效增强了雷达对海杂波中微弱目标的检测能力。
基于局部Hilbert谱平均带宽的微弱目标检测算法
张建, 关键, 董云龙, 何友
2012, 34(1): 121-127. doi: 10.3724/SP.J.1146.2011.00091  刊出日期:2012-01-19
关键词: 目标检测, 海杂波, Hilbert-Huang 变换, 平均带宽
该文采用实测海杂波数据分析了目标出现频段内海杂波局部Hilbert谱的脊线及其平均带宽,研究了目标和天线极化方式对海杂波局部Hilbert谱脊线及其平均带宽的影响。研究发现,目标的出现将导致目标所处频段的海杂波局部Hilbert谱脊线起伏趋于和缓,局部Hilbert谱平均带宽减小,在此基础上,借鉴恒虚警检测技术提出了一种新的微弱目标检测算法。该算法先采用目标所处频段的局部Hilbert谱脊线计算平均带宽,以提取目标与海杂波的差异,然后将平均带宽作为检测统计量,实现对海杂波中的微弱目标进行检测。与基于海杂波盒维数的方法和单元平均恒虚警(CA-CFAR, 100个脉冲)方法相比,该方法有效提高了对海杂波中微弱目标的检测性能。
面向通感一体化的变分模态分解-希尔伯特-黄变换呼吸频率感知算法
杨小龙, 张亭亭, 周牧, 高铭, 童睿轩
doi: 10.11999/JEIT240640
关键词: 通感一体化, 信道状态信息, 呼吸频率, Hilbert-Huang变换, 变分模态分解
通感一体化(ISAC)作为一种6G关键技术,将通信和感知功能集成到Wi-Fi设备,为室内人体呼吸频率感知提供一种有效的方法。针对当前基于ISAC的呼吸频率感知存在鲁棒性低和“盲点”的问题,该文提出一种基于信号变分模态分解(VMD)- 希尔伯特-黄变换(HHT)呼吸频率感知算法。首先,选择对环境感知敏感度较强的Wi-Fi链路构建信道状态信息(CSI)比值模型。其次,将滤波后的CSI比值时间序列的各子载波进行投影,结合幅相信息生成不同呼吸模式信号的候选集。再次,对于每一个子载波,根据周期性在候选集中选择一个短期呼吸噪声比最大的候选序列作为最终的呼吸模式,然后设置阈值选择子载波,并对其进行VMD和HHT时频分析,去除人体呼吸频率成分以外的模态分量,并重构剩余模态分量。在此基础上,利用主成分分析(PCA)对所有重构的子载波降维,选择方差贡献率达到99%以上的主成分分量,并使用ReliefF算法重新构建呼吸信号,得到融合信号。最后,对融合信号利用峰值检测算法计算呼吸频率。实验结果表明,该感知方法在会议办公室和走廊两种场景下的平均估计精度超过97%,显著提高了鲁棒性并克服了“盲点”问题,优于其他现有的感知方案。