高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向通感一体化的变分模态分解-希尔伯特-黄变换呼吸频率感知算法

杨小龙 张亭亭 周牧 高铭 童睿轩

杨小龙, 张亭亭, 周牧, 高铭, 童睿轩. 面向通感一体化的变分模态分解-希尔伯特-黄变换呼吸频率感知算法[J]. 电子与信息学报. doi: 10.11999/JEIT240640
引用本文: 杨小龙, 张亭亭, 周牧, 高铭, 童睿轩. 面向通感一体化的变分模态分解-希尔伯特-黄变换呼吸频率感知算法[J]. 电子与信息学报. doi: 10.11999/JEIT240640
YANG Xiaolong, ZHANG Tingting, ZHOU Mu, GAO Ming, TONG Ruixuan. Variational Mode Decomposition-Hilbert-Huang Transform Breathing Rate Sensing Algorithm for Integration of Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240640
Citation: YANG Xiaolong, ZHANG Tingting, ZHOU Mu, GAO Ming, TONG Ruixuan. Variational Mode Decomposition-Hilbert-Huang Transform Breathing Rate Sensing Algorithm for Integration of Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240640

面向通感一体化的变分模态分解-希尔伯特-黄变换呼吸频率感知算法

doi: 10.11999/JEIT240640
基金项目: 国家自然科学基金(62101085),重庆市教委科学技术研究项目(KJQN202400647),重庆市研究生科研创新项目(CYS240399)
详细信息
    作者简介:

    杨小龙:男,副教授,硕士生导师,研究方向为通感一体化,无线定位与感知

    张亭亭:女,硕士生,研究方向为无线定位与感知

    周牧:男,教授,博士生导师,研究方向为无线定位与感知,量子精密测量

    高铭:女,博士生,研究方向为通感一体化

    童睿轩:男,硕士生,研究方向为无线定位与感知

    通讯作者:

    周牧 zhoumu@cqupt.edu.cn

  • 中图分类号: TN929.5

Variational Mode Decomposition-Hilbert-Huang Transform Breathing Rate Sensing Algorithm for Integration of Sensing and Communication

Funds: The National Natural Science Foundation of China (62101085), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202400647), Chongqing Graduate Student Research Innovation Project (CYS240399)
  • 摘要: 通感一体化(ISAC)作为一种6G关键技术,将通信和感知功能集成到Wi-Fi设备,为室内人体呼吸频率感知提供一种有效的方法。针对当前基于ISAC的呼吸频率感知存在鲁棒性低和“盲点”的问题,该文提出一种基于信号变分模态分解(VMD)- 希尔伯特-黄变换(HHT)呼吸频率感知算法。首先,选择对环境感知敏感度较强的Wi-Fi链路构建信道状态信息(CSI)比值模型。其次,将滤波后的CSI比值时间序列的各子载波进行投影,结合幅相信息生成不同呼吸模式信号的候选集。再次,对于每一个子载波,根据周期性在候选集中选择一个短期呼吸噪声比最大的候选序列作为最终的呼吸模式,然后设置阈值选择子载波,并对其进行VMD和HHT时频分析,去除人体呼吸频率成分以外的模态分量,并重构剩余模态分量。在此基础上,利用主成分分析(PCA)对所有重构的子载波降维,选择方差贡献率达到99%以上的主成分分量,并使用ReliefF算法重新构建呼吸信号,得到融合信号。最后,对融合信号利用峰值检测算法计算呼吸频率。实验结果表明,该感知方法在会议办公室和走廊两种场景下的平均估计精度超过97%,显著提高了鲁棒性并克服了“盲点”问题,优于其他现有的感知方案。
  • 图  1  Wi-Fi信号室内呼吸感知示意图

    图  2  呼吸频率感知算法系统框图

    图  3  Wi-Fi链路选择

    图  4  CSI投影图

    图  5  VMD-HHT时频分析

    图  6  实验场景和设备图

    图  7  步长对复杂度和精度的影响

    图  8  多天线收发系统实验结果对比

    图  9  会议办公室实测结果

    图  10  呼吸频率测量结果CDF图

    图  11  呼吸频率误差箱型图

    图  12  5 m时10次估计值

    图  13  走廊场景实测结果和算法复杂度比较

    表  1  收发机参数配置

    参数 发射机 接收机
    模式 Injection Monitor
    信道编号 64(5.32 GHz)
    带宽 20 MHz
    发包速率 100包/s
    子载波个数 30
    子载波编号 –58, –54,···, 54, 58
    发射功率 15 dBm
    下载: 导出CSV
  • [1] ISLAM S M M, MOLINAROA N, SILVESTRI S, et al. Respiratory feature extraction for contactless breathing pattern recognition using a single digital camera[J]. IEEE Transactions on Human-Machine Systems, 2023, 53(3): 642–651. doi: 10.1109/THMS.2023.3254895.
    [2] XIE Wangdong, GAN Liangyu, HUANG Leilei, et al. A real-time respiration monitoring system using WiFi sensing based on the concentric circle model[J]. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17(2): 157–168. doi: 10.1109/TBCAS.2022.3229435.
    [3] YEO M, BYUN H, LEE J, et al. Robust method for screening sleep apnea with single-lead ECG using deep residual network: Evaluation with open database and patch-type wearable device data[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5428–5438. doi: 10.1109/JBHI.2022.3203560.
    [4] 余永程, 杨华荣, 郑江环, 等. 多导睡眠呼吸监测的应用与效果研究[J]. 贵州医药, 2018, 42(3): 361–362.

    YU Yongcheng, YANG Huarong, ZHENG Jianghuan, et al. Study on the application and effect of polysomnographic sleep apnea monitoring[J]. Guizhou Medical Journal, 2018, 42(3): 361–362. (查阅网上资料, 未找到对应的英文翻译信息, 请确认) .
    [5] HUANG Xude, TANG Jinbu, LUO Jingchun, et al. A wearable functional near-infrared spectroscopy (fNIRS) system for obstructive sleep apnea assessment[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 1837–1846. doi: 10.1109/TNSRE.2023.3260303.
    [6] NGUYEN P, ZHANG Xinyu, HALBOWER A, et al. Continuous and fine-grained breathing volume monitoring from afar using wireless signals[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524402.
    [7] ADIB F, MAO Hongzi, KABELAC Z, et al. Smart homes that monitor breathing and heart rate[C]. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 2015: 837–846. doi: 10.1145/2702123.2702200.
    [8] HOU Yuxiao, WANG Yawen, and ZHENG Yuanqing. TagBreathe: Monitor breathing with commodity RFID systems[C]. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, USA, 2017: 404–413. doi: 10.1109/ICDCS.2017.76.
    [9] ABDELNASSER H, HARRAS K A, and YOUSSEF M. UbiBreathe: A ubiquitous non-invasive WiFi-based breathing estimator[C]. Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Hangzhou, China, 2015: 277–286. doi: 10.1145/2746285.2755969.
    [10] ZHAO Zhe, LIU Ruiqi, and LI Junqiang. Integrated sensing and communication based breath monitoring using 5G network[C]. 2023 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 2023: 43–47. doi: 10.1109/IWCMC58020.2023.10182512.
    [11] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [12] KIM K, KIM J, and JOUNG J. A survey on system configurations of integrated sensing and communication (ISAC) systems[C]. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 2022: 1176–1178. doi: 10.1109/ICTC55196.2022.9952602.
    [13] YANG Xiaolong, CAO Ruoyu, ZHOU Mu, et al. Temporal-frequency attention-based human activity recognition using commercial WiFi devices[J]. IEEE Access, 2020, 8: 137758–137769. doi: 10.1109/ACCESS.2020.3012021.
    [14] YANG Runming, YANG Xiaolong, WANG Jiacheng, et al. Decimeter level indoor localization using WiFi channel state information[J]. IEEE Sensors Journal, 2022, 22(6): 4940–4950. doi: 10.1109/JSEN.2021.3067144.
    [15] YANG Xiaolong, LI Quanchen, ZHOU Mu, et al. Phase-calibration-based 3-D beamspace matrix pencil algorithm for indoor passive positioning and tracking[J]. IEEE Sensors Journal, 2023, 23(17): 19670–19683. doi: 10.1109/JSEN.2023.3295370.
    [16] LIU Xuefeng, CAO Jiannong, TANG Shaojie, et al. Wi-sleep: Contactless sleep monitoring via WiFi signals[C]. 2014 IEEE Real-Time Systems Symposium, Rome, Italy, 2014: 346–355. doi: 10.1109/RTSS.2014.30.
    [17] LIU Jian, WANG Yan, CHEN Yingying, et al. Tracking vital signs during sleep leveraging off-the-shelf WiFi[C]. Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Hangzhou, China, 2015: 267–276. doi: 10.1145/2746285.2746303.
    [18] ZENG Youwei, WU Dan, GAO Ruiyang, et al. FullBreathe: Full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 148. doi: 10.1145/3264958.
    [19] ZENG Youwei, WU Dan, XIONG Jie, et al. FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(3): 121. doi: 10.1145/3351279.
    [20] YU Xin, YANG Xiaolong, ZHOU Mu, et al. Wi-breath: Monitoring sleep state with Wi-Fi devices and estimating respiratory rate[C]. Proceedings of the 9th International Conference on Communications, Signal Processing, and Systems, Singapore, Singapore, 2021: 839–842. doi: 10.1007/978-981-15-8411-4_111.
    [21] WANG Hao, ZHANG Daqing, MA Junyi, et al. Human respiration detection with commodity WiFi devices: Do user location and body orientation matter?[C]. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 25–36. doi: 10.1145/2971648.2971744.
    [22] WANG Wei, LIU A X, SHAHZAD M, et al. Device-free human activity recognition using commercial WiFi devices[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(5): 1118–1131. doi: 10.1109/JSAC.2017.2679658.
    [23] YANG Jieming, LIU Yanming, LIU Zhiying, et al. A framework for human activity recognition based on WiFi CSI signal enhancement[J]. International Journal of Antennas and Propagation, 2021, 2021: 6654752. doi: 10.1155/2021/6654752.
    [24] LI Xiang, LI Shengjie, ZHANG Daqing, et al. Dynamic-MUSIC: Accurate device-free indoor localization[C]. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 196–207. doi: 10.1145/2971648.2971665.
    [25] HALPERIN D, HU Wenjun, SHETH A, et al. Tool release: Gathering 802.11n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53. doi: 10.1145/1925861.1925870.
    [26] WU Dan, ZHANG Daqing, XU Chenren, et al. WiDir: Walking direction estimation using wireless signals[C]. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 351–362. doi: 10.1145/2971648.2971658.
    [27] YUE Shichao, HE Hao, WANG Hao, et al. Extracting multi-person respiration from entangled RF signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(2): 86. doi: 10.1145/3214289.
    [28] 陶凯, 吴定会. 基于VMD-JAYA-LSSVM的短期风电功率预测[J]. 控制工程, 2021, 28(6): 1143–1149. doi: 10.14107/j.cnki.kzgc.20190288.

    TAO Kai and WU Dinghui. Short-term wind power prediction based on VMD-JAYA-LSSVM[J]. Control Engineering of China, 2021, 28(6): 1143–1149. doi: 10.14107/j.cnki.kzgc.20190288.
    [29] ZHUO Hongyang, WU Xianda, ZHONG Qinghua, et al. Position-free breath detection during sleep via commodity WiFi[J]. IEEE Sensors Journal, 2023, 23(20): 24874–24884. doi: 10.1109/JSEN.2023.3309839.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-12-12
  • 网络出版日期:  2024-12-17

目录

    /

    返回文章
    返回