在有色高斯噪声中离散时间检测和估计的性能分析
THE PERFORMANCE ANALYSIS OF DISCRETE-TIME DETECTION AND ESTIMATION IN COLOUR GAUSSIAN NOISE
-
摘要: 本文研究了在确定的观察时间内,在有色高斯噪声中离散时间检测和估计的性能与样本数之间的关系。指出相邻样本之间相关系数在0.10.2范围内,广义信噪比就能相当接近极限值S2(T)。在讨论二阶相关噪声时指出,由二阶微分方程描写的高斯过程的样本序列一般不是AR(2)模型,但是当样本间隔△0时,却可用AR(2)模型近似描写序列,因此求极限信噪比时,可以较简便地采用AR(2)模型。最后指出最大似然估计与似然比检验之间和两者的性能测度之间的联系。
-
关键词:
Abstract: The relation between the sample number and the performances of signal detection and paramater estimation in correlative Gaussian noise in fixed time T is investigated. It is pointed out that when the autocorrelation coefficient between the neighbour samples in the range of 0.1-0.2, the general SNR S2[T(XL)] will approach to the limit of SNR S2(T). It is also pointed out that the sample sequences of the solution of a second order differential equation generally is not an AR(2) model. But when the sample interval △0, the sample sequences can be described by AR(2). Therefore, S2(T) can be easily calculated. Finally, the relation between likelihood ratio detection and the maximum likelihood estimation is discussed. -
H. L. Van Trees, Detection, Estimation and Modulation Theory, part 1, New York,Wiley, 1968.[2]A. D. Whalen著,刘其培,迟惠生译,噪声中信号的检测,科学出版社,1977年.[3]W. D. Wood and J. B. Thomas, Information Sciences, 20(1981), 13.[4]S. Cambanis and E. Masry, IEEE Trans. on IT, IT-29(1983), 83.[5]A. Papoulis, Probability, Radom Variables and Stochastic Processes, McGraw-Hill, Inc., 1965.[6]A Gelb, Applied Optimal Estimation, The M. I. T. Press, 1974.[7]I. S. Meditch, Stochastic Optimal Linear Estmation and Control, 1969. 期刊类型引用(3)
1. 房玉琢, 许志勇. 一种稳健的室内无模糊多声源TDOA估计算法. 电子与信息学报. 2016(05): 1143-1150 . 本站查看
2. 贾丽娟. 融合SORM背景模型和DTCNN阈值模型的运动目标检测. 计算机工程. 2016(01): 220-224 . 百度学术
3. 王斯琪, 冯象初, 张瑞, 李小平. 基于最大范数的低秩稀疏分解模型. 电子与信息学报. 2015(11): 2601-2607 . 本站查看
其他类型引用(3)
-
计量
- 文章访问数: 1915
- HTML全文浏览量: 108
- PDF下载量: 492
- 被引次数: 6