低信噪比图象边缘提取的非线性方法
A NONLINEAR METHOD FOR EDGE DETECTION OF LOW SNR IMAGE
-
摘要: 针对低信噪比图象的边缘提取问题,本文提出了一种非线性方法,即利用大窗口平滑去噪性能强与小窗口提取边缘性能好相结合的方法,此时采取大窗口滤波,小窗口中作非线性的微分算子求导。为了避免求导后阈值选取的盲目性,文中提出了一种噪声引导的阈值确定准则,并根据这个阈值分割图象。在大窗口滤波中,采用了二维卷积等于两个一维卷积级联的技术压缩滤波器的存储空间。最后对这种方法进行了性能评价,并且给出了实验结果。Abstract: A nonlinear method for detecting the edge of low-SNR image is developed. This method adopts the filtering in large window to smooth the noise and the nonlinear differential operator in small window to detect the edges. A criterion of noise-guided threshold selection is introduced to segment the derivative image so that the threshold can be determined automatically. In large window s filtering, the technique of 2-D convolution implementation by two 1-D convolutions in series is taken to reduce the storage space of the filter. Finally, the performance of this method is evaluated, and experimental results are given.
-
D. Marr, E. C. Hildretli, Theory of edge detection, Proc. R. Soc. London. B207, (1980), 187-217.[2]R. M. Haralick, IEEE Trans. on PAMI, PAMI-6(1984)1, 56-68.[3]W. E. L. Grimson, IEEE Trans. on PAMI, PAMI-7(1985)1, 121-127.[4]Shen, S. Castan, An optimal linear operator for edge detection, Proc, CVPR-86, Miami, (1986), 109-114.[5]J. S. Chen, IEEE Trans. on PAMI, PAMI-11(1989)2, 191-198.[6]V. Berzins, Computer Vision, Graphics and Image Processing 27(1984), 195-210.[7]Z. Xu, A further study on error probabilities of Laplacian-Gaussian edge detection, Proc. 8th ICPR, Paris, (1986), 601-603.[8]A, L. D. Beckers, Metingen van Parameters voor Niet-lineaire Objectgrootte-fillters in beelden, Ingenieur's[9]thesis, Department of Applied Physics, Delft University of Technology, Dutch, (1986), 601-603.
计量
- 文章访问数: 2125
- HTML全文浏览量: 132
- PDF下载量: 476
- 被引次数: 0