二值图象平滑算法和细胞神经网络实现
SMOOTHING ALGORITHMS FOR BINARY IMAGE USING CELLULAR NEURAL NETWORKS
-
摘要: 本文利用细胞神经网络(CNN)的基本处理单元一细胞的分段线性饱和输出特性和相平面分析法实现了线性可分和线性不可分布尔函数。并利用这一原则实现了二值图象的多种CNN平滑算法。Abstract: The piecewise linear saturation characteristics of cell in a cellular neural network(CNN) and phase plane analysis method are used to realize linear separable and nonseparable Boolean expressions. And the principle is also used to achieve some CNN smoothing algorithms for binary images.
-
Chua L O, Yang L. IEEE Trans. on CAS, 1988, CAS-35(10): 1257-1272.[2]Chua L O, Yang L. IEEE Trans. on CAS, 1988, CAS-35(10): 1273-1290.[3]Proceedings of the First IEEE International Workshop on Cellular Neural Networks and Their Ap-plications. Budapest: 1990.[4]Proceeding of the Second IEEE International Workshop on Cellular Neural Networks and Their Applications. Munich: 1992.[5]Special Issue on Cellular Neural Networks. Int. J Circuit Theory and Appl., 1992, 20(8).[6]Special Issue on Cellular Neural Networks: Theory. IEEE Trans. on CAS, 1993, CAS-I, 40(3).[7]Special Issue on Cellular Neural networks: Applications. IEEE Trans. on CAS, 1993, CAS-II, 40(3).[8][8][9]Fu K S, et al. Robotics: Control, Sensing, Vision and Intelligence. New York, North-Holland: 1985.[10]Yager R R, Zadeh L A. An Introduction to Fuzzy Logic Applications in Intelligent Systems, Boston: Kluwer Academic Publishers, 1992, 1-25.
计量
- 文章访问数: 2066
- HTML全文浏览量: 100
- PDF下载量: 437
- 被引次数: 0