2020, 42(3): 720-728.
doi: 10.11999/JEIT190230
刊出日期:2020-03-19
SIMON系列算法自提出以来便受到了广泛关注。积分分析方面,Wang,Fu和Chu等人给出了SIMON32和SIMON48算法的积分分析,该文在已有的分析结果上,进一步考虑了更长分组的SIMON64算法的积分分析。基于Xiang等人找到的18轮积分区分器,该文先利用中间相遇技术和部分和技术给出了25轮SIMON64/128算法的积分分析,接着利用等价密钥技术进一步降低了攻击过程中需要猜测的密钥量,并给出了26轮SIMON64/128算法的积分分析。通过进一步的分析,该文发现高版本的SIMON算法具有更好抵抗积分分析的能力。
, 最新更新时间: ,
doi: 10.11999/JEIT240796
在车载网络(VANETs)中,联邦学习(FL)通过协同训练机器学习模型,实现了车辆间的数据隐私保护,并提高了整体模型的性能。然而,FL在VANETs中的应用仍面临诸多挑战,如模型泄露风险、训练结果验证困难以及高计算和通信成本等问题。针对这些问题,该文提出一种面向联邦学习的可验证隐私保护批量聚合方案。首先,该方案基于Boneh-Lynn-Shacham (BLS)动态短群聚合签名技术,保护了客户端与路边单元(RSU)交互过程中的数据完整性,确保全局梯度模型更新与共享过程的不可篡改性。当出现异常结果时,方案利用群签名的特性实现车辆的可追溯性。其次,结合改进的Cheon-Kim-Kim-Song (CKKS)线性同态哈希算法,对梯度聚合结果进行验证,确保在联邦学习的聚合过程中保持客户端梯度的机密性,并验证聚合结果的准确性,防止服务器篡改数据导致模型训练无效的问题。此外,该方案还支持车辆在部分掉线的情况下继续更新模型,保障系统的稳定性。实验结果表明,与现有方案相比,该方案在提升数据隐私安全性和结果的可验证性的同时,保证了较高效率。